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Positional Encoding in Transformer
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Transformers for Computer Vision

 AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE-

ICLR 2021 (https://arxiv.org/pdf/2010.11929.pdf)

 “We show that this reliance on CNNs is not necessary and a pure transformer applied 

directly to sequences of image patches can perform very well on image classification 

tasks.”

 “Vision Transformer (ViT) attains excellent results compared to state-of-the-art 

convolutional networks while requiring substantially fewer computational resources to 

train.”

 Self-attention-based architectures, in particular Transformers (Vaswani et al., 2017), 

have become the model of choice in natural language processing (NLP).

 The dominant approach is to pre-train on a large text corpus and then fine-tune on a 

smaller task-specific dataset (Devlin et al., 2019).

 “Thanks to Transformers’ computational efficiency and scalability, it has become 

possible to train models of unprecedented size, with over 100B parameters. With the 

models and datasets growing, there is still no sign of saturating performance.”
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Transformer for Computer Vision

 Split an image into patches and provide the sequence of linear 
embeddings of these patches as an input to a Transformer.

 Image patches are treated the same way as tokens (words) in an NLP 
application.

 When trained on mid-sized datasets such as ImageNet, Tansformer
models yield modest accuracies of a few percentage points below 
ResNets of comparable size.

 Reason: Transformers lack some of the inductive biases inherent to 
CNNs, such as translation equivariance and locality, and therefore do 
not generalize well when trained on insufficient amounts of data.

 “However, the picture changes if the models are trained on larger 
datasets (14M-300M images). We find that large scale training 
trumps inductive bias.”

 Naive application of self-attention to images would require that 
each pixel attends to every other pixel. 5



Vision Tranformer
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ViT - Details

 The standard Transformer receives as input a 1D sequence of token embeddings. To handle 2D 

images.

 Reshape the image                          into a sequence of flattened 2D patches 

where (H, W) is the resolution of the original image, C is the number of channels, 

(P, P) is the resolution of each image patch, and N = HW/P2 is the resulting number of patches

 The Transformer uses constant latent vector size D through all of its layers, so we flatten the 

patches and map to D dimensions with a trainable linear projection (Eq. 1). We refer to the 

output of this projection as the patch embeddings. 

 GELU is used in MLP layers - Gaussian Error Linear Unit. This activation function is used in the 

most recent Transformers – e.g., BERT, GPT-2, GPT-3
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ViT Formulation

MSA = Multi-Headed Self Attention

MLP = Multi Layer Perceptron

LN = Layer Norm
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ViT Results
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Effect of Training Data Size 

 Does Vision Transformer Always perform well.

 The Vision Transformer performs well when pre-trained on a large 

JFT-300M dataset. 

 With fewer inductive biases for vision than ResNets, how crucial is 

the dataset size? 

 Only with JFT-300M, do we see the full benefit of larger models.
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Inductive Bias
 Inductive biases are the characteristics of learning algorithms that influence 

their generalization behavior, independent of data. They drive learning 

algorithms toward particular solutions.

 Without strong inductive biases, a model can be equally attracted to several 

local minima on the loss surface; the solution can be arbitrarily affected by 

random variations, e.g., the initial state or the order of training examples.
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Inductive Bias
 The convolution operation in combination with max pooling makes CNNs 

approximately invariant to translation.

 Note that convolution is Translation equivariant (sensitive to translation), 
but pooling makes it translation invariant

 Translation invariance of CNNs improves their generalization and makes 
them data efficient compared to fully connected networks.

 In the lack of this inductive bias, the model needs to see examples of an 
image at different positions to be able to correctly classify them at test 
time.

 On the other hand, this translation invariance can hurt the performance of 
CNNs in cases where the position of the objects in the image matters.

 Transformers struggle to generalize on tasks that require capturing 
hierarchical structures when training data is limited.

 Can we combine the strengths of CNNs and Transformers?

 In a Transformer, we can transfer the effect of inductive bias through 
knowledge distillation.
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Inductive Bias Transfer – Knowledge Distillation ?
 Knowledge Distillation (Teacher-Student Model)

 where T is a temperature that is normally set to 1. Using a higher value for T

produces a softer probability distribution over classes. 
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Adversarial Machine Learning

 Whitebox Attack

 Input Image is adjusted in the direction of increasing Loss

 Requires Knowledge of Model Parameters (weights and biases)

 Blackbox Attack (Transfer Attack)

 No Knowledge of Model is needed as long as we can query the 

model – input->output label

 Pure Blackbox Attack

Needs access to the training data

 Mixed Black Box Attack

Attack Model is iteratively improved by using the training 

data as well as the query input-output label data
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Computing Gradient w/r Input Image

 Tensorflow 

 Gradient Tape Allows us to Access the Gradients with 

respect to the Loss and a particular parameter

 Example:
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Fast Gradient Sign Method - FGSM
 Whitebox Attack – Modifies the Input such that it causes increase in Loss 

def adversarial_pattern(self, model, image, label):

image = tf.cast(image, tf.float32)

with tf.GradientTape() as tape:

tape.watch(image)

prediction = model(image)

loss = tf.keras.losses.MSE(label, prediction)

gradient = tape.gradient(loss, image)

signed_grad = tf.sign(gradient)

return signed_grad

def create_adversarial_example(self, model, img_rows, img_cols, image, channels, image_label, 

epsilon=0.1):

perturbations = self.adversarial_pattern(model, image.reshape((1, img_rows, img_cols, channels)), 

image_label).numpy()

adversarial = image + perturbations * epsilon

return adversarial 16



FGSM Attack
 Examples:
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FGSM in PyTorch
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How to Safeguard Against Whitebox Attacks?

 Do Adversarial Training.

 One of the Most Popular Techniques is Called Madry Training 

Using the Projective Gradient Descent (PGD) Algorithm.

 PGD Objective is a Min-Max Problem (Relationship to GAN?)
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Projected Gradient Descent Attack - Training

 PGD Algorithm  (Defense - Training)
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Madry PGD Training

 CIFAR 10 - Attacks are allowed to perturb each pixel of the input image by at 

most epsilon=8.0 on a 0-255 pixel scale.

 PGD with 7 steps of size 2 to train the model, while using 20 steps of size 1 to 

attack it?
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Blackbox Attack

 In white-box attacks the architecture of the classifier, and trained 

weights are assumed to be known.

 In black-box attacks, the architecture and trained weights are assumed to 

be secret.

 if the defense conceals gradient information, white-box attacks will fail 

but black-box attacks may succeed.

 Blackbox Attack variations

 Target Model Based Attack

 Score-based Blackbox Attack

 Decision Based Blackbox Attack

 Synthetic Model Based Attacks (Transfer Attacks)

 Pure Blackbox Attack

 Oracle Based Blackbox Attack

 Mixed Blackbox Attack 22



Blackbox Attack

 The synthetic model is sometimes referred to as Carlini Network.

 Create another Network (simple CNN – Carlini Network) that is 

trained on the same training data (pure back box) as the Network 

we want to attack.

 Create Adversarial Examples (using PGD) on the Carlini Network, 

then attack the real Network with these examples.

 Thus Blackbox Attack uses the Transfer Learning to come up wih

the Adversarial Examples.

 CNNs have the drawback of being Extremely susceptible to 

Transfer or Blackbox Attacks – even if the complexity of the target 

and the attack networks differ greatly.

 Reference: Kaleel Mahmood, Deniz Gurevin, Marten van Dijk, Phuong Ha Nguyen, 

“Beware the Black-Box: on the Robustness of Recent Defenses to Adversarial Examples", 

https://arxiv.org/pdf/2006.10876.pdf
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Defense vs Clean Accuracy Tradeoff

 Better Adversarial Defense comes at the cost of reduction in 

Clean Accuracy.

 Can we make a model robust to White or Blackbox Attacks?

 Can we make a model robust to White or Blackbox attacks 

without sacrificing Accuracy?

 One recent Approach Friendly Adversarial Training (FAT).

Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama, Mohan 

Kankanhalli , “Attacks Which Do Not Kill Training Make Adversarial Learning Stronger”, 

https://arxiv.org/pdf/2002.11242.pdf (ICML 2020)
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