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Lecture 06:
Harris Corner Detector

Reading: T&V Section 4.3
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Motivation: Matchng Problem

Vision tasks such as stereo and motion estimation require
finding corresponding features across two or more views.
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Elements to be matched are image patches of fixed size
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ot all Patches are Created Equal!

Inituition: this would be a good patch for matching, since
it 1s very distinctive (there 1s only one patch in the second
frame that looks similar).
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ot all Patches are Created Equal!

Inituition: this would be a BAD patch for matching, since
it 1s not very distinctive (there are many similar patches
in the second frame)
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What are Corners?

* Intuitively, junctions of contours.

» Generally more stable features over changes of viewpoint
* Intuitively, large variations in the neighborhood of the point
in all directions

* They are good features to match!
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Corner Points: Basic Idea

* We should easily recognize the point by looking
at intensity values within a small window

 Shifting the window 1n any direction should yield
a large change 1n appearance.
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Interactive Nelghborhood of a Patch
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“flat” region: “edge™: “corner’:
no change in no change along significant change
all directions the edge direction in all directions

Harris corner detector gives a mathematical
approach for determining which case holds.
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Harris Detector: Mathematics

Change of intensity for the shift [u,v]:

Window Intensi
(et

Window function w(x,y) =

Shifted
intensity

I in window, 0 outside Gaussian
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Harris Detector: Intuition

Change of intensity for the shift [«,v]:

E(u,v)= Zw(x,y [[(x+u,y+v)—I(x,y) 2
XV
Shifted

Window
function

Intensity |

For nearly constant patches, this will be near O.
For very distinctive patches, this will be larger.
Hence... we want patches where E(u,v) 1s LARGE.
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Taylor Series for 2D Functions

Fxtu,y+v) = F(r,9) +f(x,9) + £ (x,0) +
First partial derivatives

1 | N
5y 1 fucl,y) Fuvfox,y v fiy ()| +

Second partial derivatives

I, - 5] . M oA 4 .
3 hu‘;j_m (2, ) 4+ 1V o (X, Y) + 1V frpy (X, 3) F V7 firay(x, }‘)}

Third partial derivatives

+ ... (Higher order terms)

First order approx

fxtuy+v) = flx.y) +uflx.y) +vfilxy)
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2 I(x+u,y+v)— f(-lf-.}")]z
~ 2 [f (}:?}!J — “-I_L' —+ ‘.:‘LL. —_ 1’(.1:._ }-’}]2 First order approx

= 2 u’I> + 2uvl I, + vzjf

) .
2 u v [;} I};ﬂ] | Rewrite as matrix equation
X4y V

: I? LI\ [ u
= | u b]<2 [f_!—}_r }3_) 1’}
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Harris Detector: Mathematics

For small shifts [, V] we have a bilinear approximation:

where M 1s a 2X2 matrix computed from image derivatives:

Windowing function - computing a

) i Note: these are just products of
weighted sum (simplest case, w=1)

components of the gradient, Ix, Iy
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Treat gradient vectors as a set of (dx,dy) points
with a center of mass defined as being at (0,0).

Fit an ellipse to that set of points via scatter matrix

Analyze ellipse parameters for varying cases...
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‘Example: Cases and 2D Derivatives

Linear Edge Flat Corner

X derivative Input image patch

Y derivative
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The distribution of x and y o -
derivatives can be characterized [ X
by the shape and size of the
principal component ellipse
" AN1~A2 = small
) B8 B4 03 02 01 0 01 02 08 08
ol Corner j 1 Linear Edge
|:|_
A
M~7\2 large “r Al large; A2 = small
65 o4 03 02 04 8 a1 a2 03 04 DE | -n:s B4 03 03 010 81 03 063 04 0%
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Classification via Eigenvalues

Ay

Classification of
1mmage points using
eigenvalues of M:
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Corner Response Measure

Measure of corner response:

(k1s an empirically determined constant; £ = 0.04 - 0.06)



Robert Collins

CSE486, Penn State Corner Response Map

lambdal

(0,0)

R=0

R=28

R=65

cepquie]

R=104

R=142

R=det M —k(trace M )’
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R <0 “Edge”
lambdal

* R depends only on
eigenvalues of M

|IR| small
“Flat”

* R 1s large for a corner R=63

* R 1s negative with large R=104

magnitude for an edge

cepqure|

R=142

R large

/ “Corner”

* |R| is small for a flat
region

ccagpﬂ” 0>
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Corner Response Example

-

Harris R score.

Ix, Iy computed using Sobel operator
Windowing function w = Gaussian, sigma=1
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Corner Response Example

Threshold: R <-10000
(edges)
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Corner Response Example

P b
_ e W
Threshold: > 10000
(corners)
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——

Threshold -10000 <R < IOOOO
(neither edges nor corners)
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1. Compute = and y derivatives of image
Ip =GEx1 I, =Ggzx*1

2. Compute products of derivatives at every
pixel

I:J"? — I.J'-'-I.'.!.' IE)’E —_ lri;fr‘; I.'{;j'_,f — .!r,;:-fy

3. Compute the sums of the products of deriva-
tives at each pixel

Sy = Gor* [0 ’Sllf,rQ = Gigs * I‘Lf? S::r.'lr_; = Gor * I.r:'_i;

4. Define at each pixel (x,y) the matrix

ooy — | Sae2(xy) Say(zy)
II('\-L'] U) - -{.';_;g"” {1"!"_‘: y] ;:]T:!;E(?\y:}

5. Compute the response of the detector at
each pixel

R = Det(H) — k(Trace(H))?

6. Threshold on value of R. Compute nonmax suppression.



