

Algorithms for Image
Processing and

Computer Vision

Second Edition

Algorithms for Image
Processing and

Computer Vision

Second Edition

J.R. Parker

Wiley Publishing, Inc.

Algorithms for Image Processing and Computer Vision, Second Edition

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright 2011 by J.R. Parker

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-64385-3
ISBN: 978-1-118-02188-0 (ebk)
ISBN: 978-1-118-02189-7 (ebk)
ISBN: 978-1-118-01962-7 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or website may provide or recommendations it may make. Further,
readers should be aware that Internet websites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2010939957

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc. is not associated with any product or vendor mentioned
in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions

‘‘Sin lies only in hurting other people unnecessarily.
All other ‘sins’ are invented nonsense.

(Hurting yourself is not a sin — just stupid.)’’

— Robert A. Heinlein

Thanks, Bob.

Credits

Executive Editor
Carol Long

Project Editor
John Sleeva

Technical Editor
Kostas Terzidis

Production Editor
Daniel Scribner

Copy Editor
Christopher Jones

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefield

Freelancer Editorial
Manager
Rosemarie Graham

Marketing Manager
Ashley Zurcher

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive
Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreaders
Nancy Hanger, Paul Sagan

Indexer
Ron Strauss

Cover Image
Ryan Sneed

Cover Designer
 GYRO PHOTOGRAPHY/
amanaimagesRB/Getty Images

vi

About the Author

J.R. Parker is a computer expert and teacher, with special interests in image
processing and vision, video game technologies, and computer simulations.
With a Ph.D. in Informatics from the State University of Gent, Dr. Parker
has taught computer science, art, and drama at the University of Calgary in
Canada, where he is a full professor. He has more than 150 technical papers
and four books to his credit, as well as video games such as the Booze Cruise,
a simulation of impaired driving designed to demonstrate its folly, and a
number of educational games. Jim lives on a small ranch near Cochrane,
Alberta, Canada with family and a host of legged and winged creatures.

vii

About the Technical Editor

Kostas Terzidis is an Associate Professor at the Harvard Graduate School of
Design. He holds a Ph.D. in Architecture from the University of Michigan
(1994), a Masters of Architecture from Ohio State University (1989), and a
Diploma of Engineering from the Aristotle University of Thessaloniki (1986).
His most recent work is in the development of theories and techniques for
the use of algorithms in architecture. His book Expressive Form: A Concep-
tual Approach to Computational Design, published by London-based Spon Press
(2003), offers a unique perspective on the use of computation as it relates to aes-
thetics, specifically in architecture and design. His book Algorithmic Architecture
(Architectural Press/Elsevier, 2006) provides an ontological investigation into
the terms, concepts, and processes of algorithmic architecture and provides
a theoretical framework for design implementations. His latest book, Algo-
rithms for Visual Design (Wiley, 2009), provides students, programmers, and
researchers the technical, theoretical, and design means to develop computer
code that will allow them to experiment with design problems.

viii

Acknowledgments

Thanks this time to Sonny Chan, for the inspiration for the parallel computing
chapter, to Jeff Boyd, for introducing me repeatedly to OpenCV, and to Ralph
Huntsinger and Ghislain C. Vansteenkiste, for getting me into and successfully
out of my Ph.D. program.

Almost all the images used in this book were created by me, using an IBM
PC with a frame grabber and a Sony CCD camera, an HP scanner, and a Sony
Eyetoy as a webcam. Credits for the few images that were not acquired in this
way are as follows:

Corel Corporation made available the color image of the grasshopper on
a leaf shown in Figure 3.33, and also was the origin of the example search
images in Figure 10.5.

The sample images in Figure 10.1 were a part of the ALOI data set, use of
which was allowed by J. M. Geusebroek.

Thanks to Big Hill Veterinary Clinic in Cochrane, Alberta, Canada, for the
X-ray image shown in Figure 3.10e.

Finally, thanks to Dr. N. Wardlaw, of the University of Calgary Department
of Geology, for the geological micropore image of Figure 3.16.

Most importantly, I need to thank my family: my wife, Katrin, and children,
Bailey and Max. They sacrificed time and energy so that this work could be
completed. I appreciate it and hope that the effort has been worthwhile.

ix

Contents at a Glance

Preface xxi

Chapter 1 Practical Aspects of a Vision System — Image Display,
Input/Output, and Library Calls 1

Chapter 2 Edge-Detection Techniques 21

Chapter 3 Digital Morphology 85

Chapter 4 Grey-Level Segmentation 137

Chapter 5 Texture and Color 177

Chapter 6 Thinning 209

Chapter 7 Image Restoration 251

Chapter 8 Classification 285

Chapter 9 Symbol Recognition 321

Chapter 10 Content-Based Search — Finding Images by Example 395

Chapter 11 High-Performance Computing for Vision and Image
Processing 425

Index 465

xi

Contents

Preface xxi

Chapter 1 Practical Aspects of a Vision System — Image Display,
Input/Output, and Library Calls 1
OpenCV 2
The Basic OpenCV Code 2

The IplImage Data Structure 3
Reading and Writing Images 6
Image Display 7
An Example 7

Image Capture 10
Interfacing with the AIPCV Library 14
Website Files 18
References 18

Chapter 2 Edge-Detection Techniques 21
The Purpose of Edge Detection 21
Traditional Approaches and Theory 23

Models of Edges 24
Noise 26
Derivative Operators 30
Template-Based Edge Detection 36

Edge Models: The Marr-Hildreth Edge Detector 39
The Canny Edge Detector 42
The Shen-Castan (ISEF) Edge Detector 48
A Comparison of Two Optimal Edge Detectors 51

xiii

xiv Contents

Color Edges 53
Source Code for the Marr-Hildreth Edge Detector 58
Source Code for the Canny Edge Detector 62
Source Code for the Shen-Castan Edge Detector 70
Website Files 80
References 82

Chapter 3 Digital Morphology 85
Morphology Defined 85
Connectedness 86
Elements of Digital Morphology — Binary Operations 87

Binary Dilation 88
Implementing Binary Dilation 92
Binary Erosion 94
Implementation of Binary Erosion 100
Opening and Closing 101
MAX — A High-Level Programming Language for

Morphology 107
The ‘‘Hit-and-Miss’’ Transform 113
Identifying Region Boundaries 116
Conditional Dilation 116
Counting Regions 119

Grey-Level Morphology 121
Opening and Closing 123
Smoothing 126
Gradient 128
Segmentation of Textures 129
Size Distribution of Objects 130

Color Morphology 131
Website Files 132
References 135

Chapter 4 Grey-Level Segmentation 137
Basics of Grey-Level Segmentation 137

Using Edge Pixels 139
Iterative Selection 140
The Method of Grey-Level Histograms 141
Using Entropy 142
Fuzzy Sets 146
Minimum Error Thresholding 148
Sample Results From Single Threshold Selection 149

Contents xv

The Use of Regional Thresholds 151
Chow and Kaneko 152
Modeling Illumination Using Edges 156
Implementation and Results 159
Comparisons 160

Relaxation Methods 161
Moving Averages 167
Cluster-Based Thresholds 170
Multiple Thresholds 171
Website Files 172
References 173

Chapter 5 Texture and Color 177
Texture and Segmentation 177
A Simple Analysis of Texture in Grey-Level Images 179
Grey-Level Co-Occurrence 182

Maximum Probability 185
Moments 185
Contrast 185
Homogeneity 185
Entropy 186
Results from the GLCM Descriptors 186
Speeding Up the Texture Operators 186

Edges and Texture 188
Energy and Texture 191
Surfaces and Texture 193

Vector Dispersion 193
Surface Curvature 195

Fractal Dimension 198
Color Segmentation 201
Color Textures 205
Website Files 205
References 206

Chapter 6 Thinning 209
What Is a Skeleton? 209
The Medial Axis Transform 210
Iterative Morphological Methods 212
The Use of Contours 221

Choi/Lam/Siu Algorithm 224
Treating the Object as a Polygon 226

Triangulation Methods 227

xvi Contents

Force-Based Thinning 228
Definitions 229
Use of a Force Field 230
Subpixel Skeletons 234

Source Code for Zhang-Suen/Stentiford/Holt Combined
Algorithm 235

Website Files 246
References 247

Chapter 7 Image Restoration 251
Image Degradations — The Real World 251
The Frequency Domain 253

The Fourier Transform 254
The Fast Fourier Transform 256
The Inverse Fourier Transform 260
Two-Dimensional Fourier Transforms 260
Fourier Transforms in OpenCV 262
Creating Artificial Blur 264

The Inverse Filter 270
The Wiener Filter 271
Structured Noise 273
Motion Blur — A Special Case 276
The Homomorphic Filter — Illumination 277

Frequency Filters in General 278
Isolating Illumination Effects 280

Website Files 281
References 283

Chapter 8 Classification 285
Objects, Patterns, and Statistics 285

Features and Regions 288
Training and Testing 292
Variation: In-Class and Out-Class 295

Minimum Distance Classifiers 299
Distance Metrics 300
Distances Between Features 302

Cross Validation 304
Support Vector Machines 306
Multiple Classifiers — Ensembles 309

Merging Multiple Methods 309
Merging Type 1 Responses 310
Evaluation 311
Converting Between Response Types 312

Contents xvii

Merging Type 2 Responses 313
Merging Type 3 Responses 315

Bagging and Boosting 315
Bagging 315
Boosting 316

Website Files 317
References 318

Chapter 9 Symbol Recognition 321
The Problem 321
OCR on Simple Perfect Images 322
OCR on Scanned Images — Segmentation 326

Noise 327
Isolating Individual Glyphs 329
Matching Templates 333
Statistical Recognition 337

OCR on Fax Images — Printed Characters 339
Orientation — Skew Detection 340
The Use of Edges 345

Handprinted Characters 348
Properties of the Character Outline 349
Convex Deficiencies 353
Vector Templates 357
Neural Nets 363

A Simple Neural Net 364
A Backpropagation Net for Digit Recognition 368

The Use of Multiple Classifiers 372
Merging Multiple Methods 372
Results From the Multiple Classifier 375

Printed Music Recognition — A Study 375
Staff Lines 376
Segmentation 378
Music Symbol Recognition 381

Source Code for Neural Net Recognition System 383
Website Files 390
References 392

Chapter 10 Content-Based Search — Finding Images by Example 395
Searching Images 395
Maintaining Collections of Images 396
Features for Query by Example 399

Color Image Features 399
Mean Color 400
Color Quad Tree 400

xviii Contents

Hue and Intensity Histograms 401
Comparing Histograms 402
Requantization 403
Results from Simple Color Features 404
Other Color-Based Methods 407

Grey-Level Image Features 408
Grey Histograms 409
Grey Sigma — Moments 409
Edge Density — Boundaries Between Objects 409
Edge Direction 410
Boolean Edge Density 410

Spatial Considerations 411
Overall Regions 411
Rectangular Regions 412
Angular Regions 412
Circular Regions 414
Hybrid Regions 414
Test of Spatial Sampling 414

Additional Considerations 417
Texture 418
Objects, Contours, Boundaries 418
Data Sets 418

Website Files 419
References 420

Systems 424

Chapter 11 High-Performance Computing for Vision and Image
Processing 425
Paradigms for Multiple-Processor Computation 426

Shared Memory 426
Message Passing 427

Execution Timing 427
Using clock() 428
Using QueryPerformanceCounter 430

The Message-Passing Interface System 432
Installing MPI 432
Using MPI 433
Inter-Process Communication 434
Running MPI Programs 436
Real Image Computations 437
Using a Computer Network — Cluster Computing 440

Contents xix

A Shared Memory System — Using the PC Graphics
Processor 444

GLSL 444
OpenGL Fundamentals 445
Practical Textures in OpenGL 448
Shader Programming Basics 451

Vertex and Fragment Shaders 452
Required GLSL Initializations 453

Reading and Converting the Image 454
Passing Parameters to Shader Programs 456
Putting It All Together 457
Speedup Using the GPU 459
Developing and Testing Shader Code 459

Finding the Needed Software 460
Website Files 461
References 461

Index 465

Preface

Humans still obtain the vast majority of their sensory input through their vi-
sual system, and an enormous effort has been made to artificially enhance this
sense. Eyeglasses, binoculars, telescopes, radar, infrared sensors, and photo-
multipliers all function to improve our view of the world and the universe.
We even have telescopes in orbit (eyes outside the atmosphere) and many of
those ‘‘see’’ in other spectra: infrared, ultraviolet, X-rays. These give us views
that we could not have imagined only a few years ago, and in colors that we’ll
never see with the naked eye. The computer has been essential for creating the
incredible images we’ve all seen from these devices.

When the first edition of this book was written, the Hubble Space Telescope
was in orbit and producing images at a great rate. It and the European
Hipparcos telescope were the only optical instruments above the atmosphere.
Now there is COROT, Kepler, MOST (Canada’s space telescope), and Swift
Gamma Ray Burst Explorer. In addition, there is the Spitzer (infrared),
Chandra (X-ray), GALEX (ultraviolet), and a score of others. The first edition
was written on a 450-Mhz Pentium III with 256 MB of memory. In 1999, the
first major digital SLR camera was placed on the market: the Nikon D1. It
had only 2.74 million pixels and cost just under $6,000. A typical PC disk
drive held 100–200 MB. Webcams existed in 1997, but they were expensive
and low-resolution. Persons using computer images needed to have a special
image acquisition card and a relatively expensive camera to conduct their
work, generally amounting to $1–2,000 worth of equipment. The technology
of personal computers and image acquisition has changed a lot since then.

The 1997 first edition was inspired by my numerous scans though the
Internet news groups related to image processing and computer vision. I
noted that some requests appeared over and over again, sometimes answered
and sometimes not, and wondered if it would be possible to answer the more

xxi

xxii Preface

frequently asked questions in book form, which would allow the development
of some of the background necessary for a complete explanation. However,
since I had just completed a book (Practical Computer Vision Using C), I was in
no mood to pursue the issue. I continued to collect information from the Net,
hoping to one day collate it into a sensible form. I did that, and the first edition
was very well received. (Thanks!)

Fifteen years later, given the changes in technology, I’m surprised at how
little has changed in the field of vision and image processing, at least at
the accessible level. Yes, the theory has become more sophisticated and
three-dimensional vision methods have certainly improved. Some robot vision
systems have accomplished rather interesting things, and face recognition has
been taken to a new level. However, cheap character recognition is still, well,
cheap, and is still not up to a level where it can be used reliably in most cases.
Unlike other kinds of software, vision systems are not ubiquitous features of
daily life. Why not? Possibly because the vision problem is really a hard one.
Perhaps there is room for a revision of the original book?

My goal has changed somewhat. I am now also interested in ‘‘democratiza-
tion’’ of this technology — that is, in allowing it to be used by anyone, at home,
in their business, or at schools. Of course, you need to be able to program a
computer, but that skill is more common than it was. All the software needed
to build the programs in this edition is freely available on the Internet. I
have used a free compiler (Microsoft Visual Studio Express), and OpenCV is
also a free download. The only impediment to the development of your own
image-analysis systems is your own programming ability.

Some of the original material has not changed very much. Edge detec-
tion, thinning, thresholding, and morphology have not been hot areas of
research, and the chapters in this edition are quite similar to those in the
original. The software has been updated to use Intel’s OpenCV system, which
makes image IO and display much easier for programmers. It is even a simple
matter to capture images from a webcam in real time and use them as input
to the programs. Chapter 1 contains a discussion of the basics of OpenCV use,
and all software in this book uses OpenCV as a basis.

Much of the mathematics in this book is still necessary for the detailed under-
standing of the algorithms described. Advanced methods in image processing
and vision require the motivation and justification that only mathematics can
provide. In some cases, I have only scratched the surface, and have left a
more detailed study for those willing to follow the references given at the
ends of chapters. I have tried to select references that provide a range of
approaches, from detailed and complex mathematical analyses to clear and
concise exposition. However, in some cases there are very few clear descrip-
tions in the literature, and none that do not require at least a university-level
math course. Here I have attempted to describe the situation in an intuitive
manner, sacrificing rigor (which can be found almost anywhere else) for as

Preface xxiii

clear a description as possible. The software that accompanies the descriptions
is certainly an alternative to the math, and gives a step-by-step description of
the algorithms.

I have deleted some material completely from the first edition. There is no
longer a chapter on wavelets, nor is there a chapter on genetic algorithms.
On the other hand, there is a new chapter on classifiers, which I think was
an obvious omission in the first edition. A key inclusion here is the chapter
on the use of parallel programming for solving image-processing problems,
including the use of graphics cards (GPUs) to accelerate calculations by factors
up to 200. There’s also a completely new chapter on content-based searches,
which is the use of image information to retrieve other images. It’s like saying,
‘‘Find me another image that looks like this.’’ Content-based search will be an
essential technology over the next two decades. It will enable the effective use
of modern large-capacity disk drives; and with the proliferation of inexpensive
high-resolution digital cameras, it makes sense that people will be searching
through large numbers of big images (huge numbers of pixels) more and more
often.

Most of the algorithms discussed in this edition can be found in source
code form on the accompanying web page. The chapter on thresholding alone
provides 17 programs, each implementing a different thresholding algorithm.
Thinning programs, edge detection, and morphology are all now available on
the Internet.

The chapter on image restoration is still one of the few sources of practical
information on that subject. The symbol recognition chapter has been updated;
however, as many methods are commercial, they cannot be described and
software can’t be provided due to patent and copyright concerns. Still, the
basics are there, and have been connected with the material on classifiers.

The chapter on parallel programming for vision is, I think, a unique feature
of this book. Again using downloadable tools, this chapter shows how to link
all the computers on your network into a large image-processing cluster. Of
couse, it also shows how to use all the CPUs on your multi-core and, most
importantly, gives an introductory and very practical look at how to program
the GPU to do image processing and vision tasks, rather than just graphics.

Finally, I have provided a chapter giving a selection of methods for use
in searching through images. These methods have code showing their imple-
mentation and, combined with other code in the book, will allow for many
hours of experimenting with your own ideas and algorithms for organizing
and searching image data sets.

Readers can download all the source code and sample images mentioned in
this book from the book’s web page — www.wiley.com/go/jrparker. You can
also link to my own page, through which I will add new code, new images,
and perhaps even new written material to supplement and update the printed
matter. Comments and mistakes (how likely is that?) can be communicated

xxiv Preface

through that web page, and errata will be posted, as will reader contributions
to the software collection and new ideas for ways to use the code methods for
compiling on other systems and with other compilers.

I invite you to make suggestions through the website for subjects for new
chapters that you would like to read. It is my intention to select a popular
request and to post a new chapter on that subject on the site at a future date.
A book, even one primarily released on paper, need not be a completely static
thing!

Jim Parker
Cochrane, Alberta, Canada

October 2010

C H A P T E R

1
Practical Aspects of a Vision

System—Image Display,
Input/Output, and Library Calls

When experimenting with vision- and image-analysis systems or implement-
ing one for a practical purpose, a basic software infrastructure is essential.
Images consist of pixels, and in a typical image from a digital camera there
will be 4–6 million pixels, each representing the color at a point in the
image. This large amount of data is stored as a file in a format (such as GIF
or JPEG) suitable for manipulation by commercial software packages, such
as Photoshop and Paint. Developing new image-analysis software means
first being able to read these files into an internal form that allows access to
the pixel values. There is nothing exciting about code that does this, and it
does not involve any actual image processing, but it is an essential first step.
Similarly, image-analysis software will need to display images on the screen
and save them in standard formats. It’s probably useful to have a facility for
image capture available, too. None of these operations modify an image but
simply move it about in useful ways.

These bookkeeping tasks can require most of the code involved in an
imaging program. The procedure for changing all red pixels to yellow, for
example, can contain as few as 10 lines of code; yet, the program needed to
read the image, display it, and output of the result may require an additional
2,000 lines of code, or even more.

Of course, this infrastructure code (which can be thought of as an application
programming interface, or API) can be used for all applications; so, once it is
developed, the API can be used without change until updates are required.
Changes in the operating system, in underlying libraries, or in additional
functionalities can require new versions of the API. If properly done, these

1

2 Chapter 1 ■ Practical Aspects of a Vision System

new versions will require little or no modification to the vision programs that
depend on it. Such an API is the OpenCV system.

1.1 OpenCV

OpenCV was originally developed by Intel. At the time of this writing,
version 2.0 is current and can be downloaded from http://sourceforge

.net/projects/opencvlibrary/.
However, Version 2.0 is relatively new, yet it does not install and compile

with all of the major systems and compilers. All the examples in this book use
Version 1.1 from http://sourceforge.net/projects/opencvlibrary/files

/opencv-win/1.1pre1/OpenCV_1.1pre1a.exe/download, and compile with the
Microsoft Visual C++ 2008 Express Edition, which can be downloaded from
www.microsoft.com/express/Downloads/#2008-Visual-CPP.

The Algorithms for Image Processing and Computer Vision website
(www.wiley.com/go/jrparker) will maintain current links to new versions of
these tools. The website shows how to install both the compiler and OpenCV.
The advantage of using this combination of tools is that they are still pretty
current, they work, and they are free.

1.2 The Basic OpenCV Code

OpenCV is a library of C functions that implement both infrastructure oper-
ations and image-processing and vision functions. Developers can, of course,
add their own functions into the mix. Thus, any of the code described here
can be invoked from a program that uses the OpenCV paradigm, meaning
that the methods of this book are available in addition to those of OpenCV.
One simply needs to know how to call the library, and what the basic data
structures of open CV are.

OpenCV is a large and complex library. To assist everyone in starting to use
it, the following is a basic program that can be modified to do almost anything
that anyone would want:

// basic.c : A `wrapper´ for basic vision programs.

#include s̋tdafx.h˝

#include c̋v.h˝

#include h̋ighgui.h˝

int main (int argc, char* argv[])

{

IplImage *image = 0;

Chapter 1 ■ Practical Aspects of a Vision System 3

image = cvLoadImage(C̋:\AIPCV\image1.jpg˝, 1);

if(image)

{

cvNamedWindow(I̋nput Image˝, 1);

cvShowImage(I̋nput Image˝, image);

printf(P̋ress a key to exit\n˝);

cvWaitKey(0);

cvDestroyWindow(S̋tring˝);

}

else

fprintf(stderr, E̋rror reading image\n˝);

return 0;

}

This is similar to many example programs on the Internet. It reads in an
image (C:\AIPCV\image1.jpg is a string giving the path name of the image)
and displays it in a window on the screen. When the user presses a key, the
program terminates after destroying the display window.

Before anyone can modify this code in a knowledgeable way, the data
structures and functions need to be explained.

1.2.1 The IplImage Data Structure
The IplImage structure is the in-memory data organization for an image.
Images in IplImage form can be converted into arrays of pixels, but IplImage
also contains a lot of structural information about the image data, which can
have many forms. For example, an image read from a GIF file could be 256
grey levels with an 8-bit pixel size, or a JPEG file could be read into a 24-bit
per pixel color image. Both files can be represented as an IplImage.

An IplImage is much like other internal image representations in its basic
organization. The essential fields are as follows:

width An integer holding the width of the image in pixels

height An integer holding the height of the image in pixels

imageData A pointer to an array of characters, each one an actual pixel or color value

If each pixel is one byte, this is really all we need. However, there are many
data types for an image within OpenCV; they can be bytes, ints, floats, or
doubles in type, for instance. They can be greys (1 byte) or 3-byte color (RGB),
4 bytes, and so on. Finally, some image formats may have the origin at the
upper left (most do, in fact) and some use the lower left (only Microsoft).

4 Chapter 1 ■ Practical Aspects of a Vision System

Other useful fields to know about include the following:

nChannels An integer specifying the number of colors per pixel (1–4).

depth An integer specifying the number of bits per pixel.

origin The origin of the coordinate system. An integer: 0=upper
left, 1=lower left.

widthStep An integer specifying, in bytes, the size of one row of the
image.

imageSize An integer specifying, in bytes, the size of the image
(= widthStep * height).

imageDataOrigin A pointer to the origin (root, base) of the image.

roi A pointer to a structure that defines a region of interest
within this image that is being processed.

When an image is created or read in from a file, an instance of an IplImage

is created for it, and the appropriate fields are given values. Consider the
following definition:

IplImage* img = 0;

As will be described later in more detail, an image can be read from a file by
the following code:

img = cvLoadImage(filename);

where the variable filename is a string holding the name of the image file. If
this succeeds, then

img->imageData

points to the block of memory where the pixels can be found. Figure 1.1 shows
a JPEG image named marchA062.jpg that can be used as an example.

Reading this image creates a specific type of internal representation common
to basic RGB images and will be the most likely variant of the IplImage

structure to be encountered in real situations. This representation has each
pixel represented as three bytes: one for red, one for green, and one for
blue. They appear in the order b, g, r, starting at the first row of the image
and stepping through columns, and then rows. Thus, the data pointed to by
img->imageData is stored in the following order:

b0,0 g0,0 r0,0 b0,1 g0,1 r0,1 b0,2 g0,2 r0,2 . . .

This means that the RGB values of the pixels in the first row (row 0) appear
in reverse order (b, g, r) for all pixels in that row. Then comes the next row,
starting over at column 0, and so on, until the final row.

Chapter 1 ■ Practical Aspects of a Vision System 5

Figure 1.1: Sample digital image for use in this chapter. It is an image of a tree in Chico,
CA, and was acquired using an HP Photosmart M637 camera. This is typical of a modern,
medium-quality camera.

How can an individual pixel be accessed? The field widthStep is the size of
a row, so the start of image row i would be found at

img->imageData + i*img->widthStep

Column j is j pixels along from this location; if pixels are bytes, then that’s

img->imageData + i*img->widthStep + j

If pixels are RGB values, as in the JPEG image read in above, then each pixel
is 3 bytes long and pixel j starts at location

img->imageData + i*img->widthStep + j*3

The value of the field nChannels is essentially the number of bytes per pixel,
so the pixel location can be generalized as:

img->imageData + i*img->widthStep))[j*img->nChannels]

Finally, the color components are in the order blue, green, and red. Thus,
the blue value for pixel [i,j] is found at

(img->imageData + i*img->widthStep)[j*img->nChannels + 0]

and green and red at the following, respectively:

(img->imageData + i*img->widthStep)[j*img->nChannels + 1]

(img->imageData + i*img->widthStep)[j*img->nChannels + 2]

The data type for a pixel will be unsigned character (or uchar).
There is a generic way to access pixels in an image that automatically uses

what is known about the image and its format and returns or modifies a
specified pixel. This is quite handy, because pixels can be bytes, RGB, float, or

6 Chapter 1 ■ Practical Aspects of a Vision System

double in type. The function cvGet2D does this; getting the pixel value at i,j
for the image above is simply

p = cvGet2D (img, i, j);

The variable p is of type CvScalar, which is

struct CvScalar

{

double val[4];

}

If the pixel has only a single value (i.e., grey), then p.val[0] is that value. If it
is RGB, then the color components of the pixel are as follows:

Blue is p.val[0]

Green is p.val[1]

Red is p.val[2]

Modifying the pixel value is done as follows:

p.val[0] = 0; // Blue

p.val[1] = 255; // Green

p.val[2] = 255; // Red

cvSet2D(img,i,j,p); // Set the (i,j) pixel to yellow

This is referred to as indirect access in OpenCV documentation and is slower
than other means of accessing pixels. It is, on the other hand, clean and clear.

1.2.2 Reading and Writing Images
The basic function for image input has already been seen; cvLoadImage reads
an image from a file, given a path name to that file. It can read images in JPEG,
BMP, PNM, PNG, and TIF formats, and does so automatically, without the
need to specify the file type. This is determined from the data on the file itself.
Once read, a pointer to an IplImage structure is returned that will by default
be forced into a 3-channel RGB form, such as has been described previously.
So, the call

img = cvLoadImage (filename);

returns an IplImage*value that is an RGB image, unless the file name indicated
by the string variable filename can’t be read, in which case the function returns
0 (null). A second parameter can be used to change the default return image.
The call

img = cvLoadImage (filename, f);

Chapter 1 ■ Practical Aspects of a Vision System 7

returns a 1 channel (1 byte per pixel) grey-level image if f=0, and returns the
actual image type that is found in the file if f<0.

Writing an image to a file can be simple or complex, depending on what the
user wants to accomplish. Writing grey-level or RGB color images is simple,
using the code:

k = cvSaveImage(filename, img);

The filename is, as usual, a string indicating the name of the file to be saved,
and the img variable is the image to be written to that file. The file type will
correspond to the suffix on the file, so if the filename is file.jpg, then the file
format will be JPEG. If the file cannot be written, then the function returns 0.

1.2.3 Image Display
If the basic C/C++ compiler is used alone, then displaying an image is quite
involved. One of the big advantages in using OpenCV is that it provides easy
ways to call functions that open a window and display images within it. This
does not require the use of other systems, such as Tcl/Tk or Java, and asks
the programmer to have only a basic knowledge of the underlying system for
managing windows on their computer.

The user interface functions of OpenCV are collected into a library named
highgui, and are documented on the Internet and in books. The basics are as
follows: a window is created using the cvNamedWindow function, which specifies
a name for the window. All windows are referred to by their name and not
through pointers. When created, the window can be given the autosize

property or not. Following this, the function cvShowImage can be used to
display an image (as specified by an IplImage pointer) in an existing window.
For windows with the autosize property, the window will change size to fit
the image; otherwise, the image will be scaled to fit the window.

Whenever cvShowimage is called, the image passed as a parameter is dis-
played in the given window. In this way, consecutive parts of the processing
of an image can be displayed, and simple animations can be created and
displayed. After a window has been created, it can be moved to any position
on the screen using cvMoveWindow (name, x, y). It can also be moved using
the mouse, just like any other window.

1.2.4 An Example
It is now possible to write a simple OpenCV program that will read, process,
and display an image. The input image will be that of Figure 1.1, and the goal
will be to threshold it.

8 Chapter 1 ■ Practical Aspects of a Vision System

First, add the needed include files, declare an image, and read it from a
file.

// Threshold a color image.

#include “stdafx.h“

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <cv.h>

#include <highgui.h>

int main (int argc, char* argv[])

{

IplImage *image = 0;

int i,j,k;

int mean=0, count=0;

char c;

image = cvLoadImage(“C:/AIPCV/marchA062.jpg“);

At this point, there should be image data pointed to by image. If so (if the
image is not null), display it in a window, as before.

if(image)

{

printf (“Height %d X with %d\n“, image->height, image->width);

cvNamedWindow(“mainWin“, CV_WINDOW_AUTOSIZE);

cvShowImage(“mainWin“, image);

printf (“Display of image is done.\n“);

cvWaitKey(0); // wait for a key

Now perform the thresholding operation. But this is a color image, so
convert it to grey first using the average of the three color components.

for (i=0; i<image->height; i++)

for (j=0; j<image->width; j++)

{

k=((image->imageData+i*image->widthStep)[j*image->nChannels+0]

+(image->imageData+i*image->widthStep)[j*image->nChannels+1]

+(image->imageData+i*image->widthStep)[j*image->nChannels+2])/3;

(image->imageData+i*image->widthStep)[j*image->nChannels+0]

= (UCHAR) k;

(image->imageData+i*image->widthStep)[j*image->nChannels+1]

= (UCHAR) k;

(image->imageData+i*image->widthStep)[j*image->nChannels+2]

= (UCHAR) k;

Chapter 1 ■ Practical Aspects of a Vision System 9

At this point in the loop, count and sum the pixel values so that the mean
can be determined later.

mean += k;

count++;

}

Make a new window and display the grey image in it.

cvNamedWindow(“grey“, CV_WINDOW_AUTOSIZE);

cvShowImage(“grey“, image);

cvWaitKey(0); // wait for a key

Finally, compute the mean level for use as a threshold and pass through the
image again, setting pixels less than the mean to 0 and those greater to 255;

mean = mean/count;

for (i=0; i<image->height; i++)

for (j=0; j<image->width; j++)

{

k=(image->imageData+i*image->widthStep)

[j * image->nChannels + 0];

if (k < mean) k = 0;

else k = 255;

(image->imageData+i*image->widthStep)[j*image->nChannels+0]

= (UCHAR) k;

(image->imageData+i*image->widthStep)[j*image->nChannels+1]

= (UCHAR) k;

(image->imageData+i*image->widthStep)[j*image->nChannels+2]

= (UCHAR) k;

}

One final window is created, and the final thresholded image is displayed
and saved.

cvNamedWindow(“thresh“);

cvShowImage(“thresh“, image);

cvSaveImage(“thresholded.jpg“, image);

Wait for the user to type a key before destroying all the windows and
exiting.

cvWaitKey(0); // wait for a key

cvDestroyWindow(“mainWin“);

cvDestroyWindow(“grey“);

cvDestroyWindow(“thresh“);

}

10 Chapter 1 ■ Practical Aspects of a Vision System

else

fprintf(stderr, “Error reading image\n“);

return 0;

}

Figure 1.2 shows a screen shot of this program.

Figure 1.2: The three image windows created by the thresholding program.

1.3 Image Capture

The processing of still photos or scientific images can be done quite effectively
using scanned image or data from digital cameras. The availability of digital
image data has increased many-fold over the past decade, and it is no longer
unusual to find a digital camera, a scanner, and a video camera in a typical
household or small college laboratory. Other kinds of data and other devices
can be quite valuable sources of images for a vision system, key among
these the webcam. These are digital cameras, almost always USB powered,
having image sizes of 640x480 or larger. They acquire color images at video
rates, making such cameras ideal for certain vision applications: surveillance,

Chapter 1 ■ Practical Aspects of a Vision System 11

robotics, games, biometrics, and places where computers are easily available
and very high quality is not essential.

There are a great many types of webcam, and the details of how they work
are not relevant to this discussion. If a webcam is properly installed, then
OpenCV should be able to detect it, and the capture functions should be able
to acquire images from it. The scheme used by OpenCV is to first declare and
initialize a camera, using a handle created by the system. Assuming that this
is successful, images can be captured through the handle.

Initializing a camera uses the cvCaptureFromCAM function:

CvCapture *camera = 0;

camera = cvCaptureFromCAM(CV_CAP_ANY);

if(!camera) error ...

The type CvCapture is internal, and represents the handle used to capture
images. The function cvCaptureFromCam initializes capturing a video from a
camera, which is specified using the single parameter. CV_CAP_ANY will allow
any connected camera to be used, but the system will choose which one. If
0 is returned, then no camera was seen, and image capture is not possible;
otherwise, the camera’s handle is returned and is needed to grab images.

A frame (image) can be captured using the cvQueryFrame function:

IplImage *frame = 0;

frame = cvQueryFrame(camera);

The image returned is an IplImage pointer, which can be used immediately.
When the program is complete, it is always a good idea to free any resources

allocated. In this case, that means releasing the camera, as follows:

cvReleaseCapture(&camera);

It is now possible to write a program that drives the webcam. Let’s have
the images displayed in a window so that the live video can be seen. When a
key is pressed, the program will save the current image in a JPEG file named
VideoFramexx.jpg, where xx is a number that increases each time.

// Capture.c - image capture from a webcam

#include “stdafx.h“

#include “stdio.h“

#include “string.h“

#include “cv.h“

#include “highgui.h“

int main(int argc, char ** argv)

{

CvCapture *camera = 0;

12 Chapter 1 ■ Practical Aspects of a Vision System

IplImage *frame = 0;

int i, n=0;

char filename[256];

char c;

Initialize the camera and check to make sure that it is working.

camera = cvCaptureFromCAM(CV_CAP_ANY);

if(!camera) // Get a camera?

{

fprintf(stderr, “Can’t initialize camera\n“);

return -1;

}

Open a window for image display.

cvNamedWindow(“video“, CV_WINDOW_AUTOSIZE);

cvMoveWindow (“video“, 150, 200);

This program will capture 600 frames. At video rates of 30 FPS, this would
be 20 seconds, although cameras do vary on this.

for(i=0; i<600; i++)

{

frame = cvQueryFrame(camera); // Get one frame.

if(!frame)

{

fprintf(stderr, “Capture failed.\n“);

}

The following creates a short pause between frames. Without it, the images
come in too fast, and in many cases nothing is displayed. cvWaitKey waits for
a key press or for the time specified — in this case, 100 milliseconds.

c = cvWaitKey(100);

Display the image we just captured in the window.

// Display the current frame.

cvShowImage(“video“, frame);

If cvWaitKey actually caught a key press, this means that the image is to be
saved. If so, the character returned will be >0. Save it as a file in the AIPCV

directory.

if (c>0)

{

sprintf(filename, “C:/AIPCV/VideoFrame%d.jpg“, n++);

if(!cvSaveImage(filename, frame))

Chapter 1 ■ Practical Aspects of a Vision System 13

{

fprintf(stderr, “Failed to save frame as '%s’\n“, filename);

} else

fprintf (stderr, “Saved frame as 'VideoFrame%d.jpg’\n“, n-1);

}

}

Free the camera to avoid possible problems later.

cvReleaseCapture(&camera);

// Wait for terminating keypress.

cvWaitKey(0);

return 0;

}

The data from the camera will be displayed at a rate of 10 frames/second,
because the delay between frames (as specified by cvWaitKey is 100 milli-
seconds, or 100/1000 = 0.1 seconds. This means that the frame rate can be
altered by changing this parameter, without exceeding the camera’s natural
maximum. Increasing this parameter decreases the frame rate. An example of
how this program appears on the screen while running is given as Figure 1.3.

Figure 1.3: How the camera capture program looks on the screen. The image seems
static, but it is really live video.

14 Chapter 1 ■ Practical Aspects of a Vision System

1.4 Interfacing with the AIPCV Library

This book discusses many algorithms, almost all of which are provided in
source code form at the book’s corresponding website. To access the examples
and images on a PC, copy the directory AIPCV to the C: directory. Within
that directory are many C source files that implement the methods discussed
here. These programs are intended to be explanatory rather than efficient, and
represent another way, a very precise way, to explain an algorithm. These
programs comprise a library that uses a specific internal form for storing
image data that was intended for use with grey-level images. It is not directly
compatible with OpenCV, and so a conversion tool is needed.

OpenCV is not only exceptionally valuable for providing infrastructure to a
vision system, but it also provides a variety of image-processing and computer
vision functions. Many of these will be discussed in upcoming chapters (Canny
and Sobel edge detection, for example), but many of the algorithms described
here and provided in code form in the AIPCV library do not come with
OpenCV. How can the two systems be used together?

The key detail when using OpenCV is knowledge of how the image structure
is implemented. Thus, connecting OpenCV with the AIPCV library is largely a
matter of providing a way to convert between the image structures of the two
systems. This turns out to be quite simple for grey-level, one-channel images,
and more complex for color images.

The basic image structure in the AIPCV library consists of two structures: a
header and an image. The image structure, named simply image, consists of
two pointers: one to a header and one to an array of pixel data:

struct image

{

struct header *info; // Pointer to header

unsigned char **data; // Pointer tp pixels

};

The pixel data is stored in the same way as for single-channel byte images
in OpenCV: as a block of bytes addressed in row major order. It is set up to
be indexed as a 2D array, however, so data is an array of pointers to rows.
The variable data[0] is a pointer to the beginning of the entire array, and so
is equivalent to IplImage.imageData.

The header is quite simple:

struct header

{

int nr, nc;

int oi, oj;

};

Chapter 1 ■ Practical Aspects of a Vision System 15

The field nr is the number of rows in the image, and nc is the number
of columns. These are equivalent to IplImage.height and IplImage.width,
respectively. The oi and oj fields specify the origin of the image, and are used
only for a very few cases (e.g., restoration). There are no corresponding fields
in OpenCV.

The way to convert an AIPCV image into an OpenCV image is now clear,
and is needed so that images can be displayed in windows and saved in
JPEG and other formats.

IplImage *toOpenCV (IMAGE x)

{

IplImage *img;

int i=0, j=0;

CvScalar s;

img=cvCreateImage(cvSize(x->info->nc,x->info->nr),8, 1);

for (i=0; i<x->info->nr; i++)

{

for (j=0; j<x->info->nc; j++)

{

s.val[0] = x->data[i][j];

cvSet2D (img, i,j,s);

}

}

return img;

}

This function copies the pixel values into a new IplImage. It is also possible
to use the original data array in the IplImage directly. There is some danger in
this, in that OpenCV may decide to free the storage, for instance, making both
versions inaccessible.

Converting from IplImage to AIPCV is more complicated, because OpenCV
images might be in color. If so, how is it converted into grey? We’ll not
dwell on this except to say that one color image can be converted into three
monochrome images (one each for red, green, and blue), or a color map could
be constructed using a one-byte index that could be used as the pixel value.
The solution presented here is to convert a 3-channel color image into grey by
averaging the RGB values, leaving the other solutions for future consideration.

IMAGE fromOpenCV (IplImage *x)

{

IMAGE img;

int color=0, i=0;

int k=0, j=0;

CvScalar s;

if ((x->depth==IPL_DEPTH_8U) &&(x->nChannels==1)) // Grey image

16 Chapter 1 ■ Practical Aspects of a Vision System

img = newimage (x->height, x->width);

else if ((x->depth==8) && (x->nChannels==3)) //Color

{

color = 1;

img = newimage (x->height, x->width);

}

else return 0;

for (i=0; i<x->height; i++)

{

for (j=0; j<x->width; j++)

{

s = cvGet2D (x, i, j);

if (color)

k= (unsigned char) ((s.val[0]+s.val[1]+s.val[2])/3);

else k = (unsigned char)(s.val[0]);

img->data[i][j] = k;

}

}

return img;

}

The two functions toOpenCV and fromOpenCV do the job of allowing the
image-processing routines developed here to be used with OpenCV. As a
demonstration, here is the main routine only for a program that thresholds
an image using the method of grey-level histograms devised by Otsu and
presented in Chapter 4. It is very much like the program for thresholding
written earlier in Section 1.2.4, but instead uses the AIPCV library function
thr_glh to find the threshold and apply it.

int main(int argc, char *argv[])

{

IplImage* img=0;

IplImage* img2=0;

IMAGE x;

int height,width,step,channels;

uchar *data;

int mean=0,count=0;

if(argc<1){

printf(“Usage: main <image-file-name>\n\7“);

exit(0);

}

// load an image

img=cvLoadImage(“H:/AIPCV/marchA062.jpg“);

Chapter 1 ■ Practical Aspects of a Vision System 17

if(!img)

{

printf(“Could not load image file: %s\n“,argv[1]);

exit(0);

}

// get the image data

height = img->height;

width = img->width;

step = img->widthStep;

channels = img->nChannels;

data = (uchar *)img->imageData;

printf(“Processing a %dx%d image with %dchannels\n“,

height,width,channels);

// create a window

cvNamedWindow(“win1“, CV_WINDOW_AUTOSIZE);

cvMoveWindow(“win1“, 100, 100);

// show the image

cvShowImage(“win1“, img);

// Convert to AIPCV IMAGE type

x = fromOpenCV (img);

if (x)

{

thr_glh (x);

img2 = toOpenCV (x); // Convert to OpenCV to display

cvNamedWindow(“thresh“);

cvShowImage(“thresh“, img2);

cvSaveImage(“thresholded.jpg“, img2);

}

// wait for a key

cvWaitKey(0);

// release the image

cvReleaseImage(&img);

return 0;

}

In the remainder of this book, we will assume that OpenCV can be used for
image display and I/O and that the native processing functions of OpenCV
can be added to what has already been presented.

For convenience, the AIPCV library contains the following X functions for
IO and display of its images directly to OpenCV:

18 Chapter 1 ■ Practical Aspects of a Vision System

display_image (IMAGE x) Displays the specified image on the
screen

save_image (IMAGE x, char *name) Saves the image in a file with the given
name

IMAGE get_image (char *name) Reads the image in the named file and
return a pointer to it

IMAGE grab_image () Captures an image from an attached
webcam and return a pointer to it

1.5 Website Files

The website associated with this book contains code and data associated with
each chapter, in addition to new information, errata, and other comments.
Readers should create a directory for this information on their PC called
C:\AIPCV. Within that, directories for each chapter can be named CH1, CH2, and
so on.

The following material created for this chapter will appear in C:\AIPCV\CH1:

capture.c Gets an image from a webcam

lib0.c A collection of OpenCV input/output/display functions

thr_glh.c Thresholds an image

1.6 References

Agam, Gady. ‘‘Introduction to Programming With OpenCV,’’ www.edu/~agam/
cs512/lect-notes/opencv-intro/opencv-intro.html (accessed January
27, 2006).

Bradsky, Gary and Kaehler, Adrian. Learning OpenCV: Computer Vision with
the OpenCV Library. Sebastopol: O’Reilly Media Inc, 2008.

‘‘CV Reference Manual,’’ http://cognotics.com/opencv/docs/1.0/ref/
opencvref_cv.htm (accessed March 16, 2010).

‘‘cvCam Reference Manual,’’www.cognotics.com/opencv/docs/1.0/cvcam.pdf
(accessed March 16, 2010).

‘‘CXCORE Reference Manual,’’http://cognotics.com/opencv/docs/1.0/ref/
opencvref_cxcore.htm (accessed March 16, 2010).

‘‘Experimental and Obsolete Functionality Reference,’’http://cognotics.com/
opencv/docs/1.0/ref/opencvref_cvaux.htm (accessed March 16, 2010).

Chapter 1 ■ Practical Aspects of a Vision System 19

‘‘HighGUI Reference Manual,’’ cognotics.com/opencv/docs/1.0/ref/
opencvref_highgui.htm (accessed March 16, 2010).

‘‘OpenCV Wiki-Pages,’’ http://opencv.willowgarage.com/wiki.
Otsu, N, ‘‘A Threshold Selection Method from Grey-Level Histograms,’’ SMC

9, no. 1 (1979): 62–66.
Parker, J. R. Practical Computer Vision Using C. New York: John Wiley & Sons,

Inc., 1994.

C H A P T E R

2

Edge-Detection Techniques

2.1 The Purpose of Edge Detection

Edge detection is one of the most commonly used operations in image analysis,
and there are probably more algorithms in the literature for enhancing and
detecting edges than any other single subject. The reason for this is that edges
form the outline of an object, in the generic sense. Objects are subjects of interest
in image analysis and vision systems. An edge is the boundary between an
object and the background, and indicates the boundary between overlap-
ping objects. This means that if the edges in an image can be identified
accurately, all the objects can be located, and basic properties such as area,
perimeter, and shape can be measured. Since computer vision involves the
identification and classification of objects in an image, edge detection is an
essential tool.

Figure 2.1 illustrates a straightforward example of edge detection. There are
two overlapping objects in the original picture: (a), which has a uniform grey
background; and (b), the edge-enhanced version of the same image has dark
lines outlining the three objects. Note that there is no way to tell which parts
of the image are background and which are object; only the boundaries between
the regions are identified. However, given that the blobs in the image are the
regions, it can be determined that the blob numbered ‘‘3’’ covers up a part of
blob ‘‘2’’ and is therefore closer to the camera.

Edge detection is part of a process called segmentation — the identification
of regions within an image. The regions that may be objects in Figure 2.1 have
been isolated, and further processing may determine what kind of object each

21

22 Chapter 2 ■ Edge-Detection Techniques

region represents. While in this example edge detection is merely a step in the
segmentation process, it is sometimes all that is needed, especially when the
objects in an image are lines.

(a) (b)

1

2
3

1

2
3

Figure 2.1: Example of edge detection. (a) Synthetic image with blobs on a grey
background. (b) Edge-enhanced image showing only the outlines of the objects.

Consider the image in Figure 2.2, which is a photograph of a cross-section
of a tree. The growth rings are the objects of interest in this image. Each ring
represents a year of the tree’s life, and the number of rings is therefore the same
as the age of the tree. Enhancing the rings using an edge detector, as shown
in Figure 2.2b, is all that is needed to segment the image into foreground
(objects = rings) and background (everything else).

(a) (b) (c)

Figure 2.2: The A cross-section of a tree. (a) Original grey-level image. (b) Ideal edge
enhanced image, showing the growth rings. (c) The edge enhancement that one might
expect using a real algorithm.

Technically, edge detection is the process of locating the edge pixels, and edge
enhancement is the process of increasing the contrast between the edges and
the background so that the edges become more visible. In practice, however, the
terms are used interchangeably, since most edge-detection programs also set

Chapter 2 ■ Edge-Detection Techniques 23

the edge pixel values to a specific grey level or color so that they can be easily
seen. In addition, edge tracing is the process of following the edges, usually
collecting the edge pixels into a list. This is done in a consistent direction,
either clockwise or counter-clockwise around the objects. Chain coding is one
example of a specific algorithm for edge tracing. The result is a non-raster
representation of the objects that can be used to compute shape measures or
otherwise identify or classify the object.

The remainder of this chapter discusses the theory of edge detection,
including a collection of traditional methods. This includes the Canny edge
detector and the Shen-Castan, or ISEF, edge detector. Both are based solidly on
theoretical considerations, and both claim a degree of optimality; that is, both
claim to be the best that can be done under certain specified circumstances.
These claims will be examined, both in theory and in practice.

2.2 Traditional Approaches and Theory

Most good algorithms begin with a clear statement of the problem to be solved,
and a cogent analysis of the possible methods of solution and the conditions
under which the methods will operate correctly. Using this paradigm, to define
an edge-detection algorithm means first defining what an edge is, and then
using this definition to suggest methods of enhancement and identification.

As usual, there are a number of possible definitions of an edge, each being
applicable in various specific circumstances. One of the most common and
most general definitions is the ideal step edge, illustrated in Figure 2.3.

In this one-dimensional example, the edge is simply a change in grey level
occurring at one specific location. The greater the change in level, the easier
the edge is to detect (although in the ideal case, any level change can be seen
quite easily).

The first complication occurs because of digitization. It is unlikely that the
image will be sampled in such a way that all the edges happen to correspond
exactly with a pixel boundary. Indeed, the change in level may extend across
some number of pixels (Figures 2.3b–d). The actual position of the edge is
considered to be the center of the ramp connecting the low grey level to the
high one. This is a ramp in the mathematical world only, since after the image
has been made digital (sampled), the ramp has the jagged appearance of a
staircase.

The second complication is the ubiquitous problem of noise. Due to a
great many factors such as light intensity, type of camera and lens, motion,
temperature, atmospheric effects, dust, and others, it is very unlikely that two
pixels that correspond to precisely the same grey level in the scene will have
the same level in the image. Noise is a random effect and can be characterized
only statistically. The result of noise on the image is to produce a random

24 Chapter 2 ■ Edge-Detection Techniques

variation in level from pixel to pixel, and so the smooth lines and ramps of the
ideal edges are never encountered in real images.

0 5 10

0

5

10

Position

Grey
Level

Edge position

(a)

15 20 0 5 10

0

5

10

Position

Grey
Level

Edge position

(b)

15 20

0 5 10

0

5

10

Position

Grey
Level

Edge position

(c)

15 20 0 5 10

0

5

10

Position

Grey
Level

Edge position

(d)

15 20

Figure 2.3: Step edges. (a) The change in level occurs exactly at pixel 10. (b) The same
level change as before, but over 4 pixels centered at pixel 10. This is a ramp edge.
(c) Same level change but over 10 pixels, centered at 10. (d) A smaller change over 10
pixels. The insert shows the way the image would appear, and the dotted line shows
where the image was sliced to give the illustrated cross-section.

2.2.1 Models of Edges
The step edge of Figure 2.3a is ideal because it is easy to detect: In the absence
of noise, any significant change in grey level would indicate an edge. A step
edge never really occurs in an image because: a) objects rarely have such a
sharp outline; b) a scene is never sampled so that edges occur exactly at the
margin of a pixel; and c) due to noise, as mentioned previously.

Chapter 2 ■ Edge-Detection Techniques 25

Noise will be discussed in the next section, and object outlines vary quite
a bit from image to image, so let us concentrate for a moment on sampling.
Figure 2.4a shows an ideal step edge and the set of pixels involved.

Note that the edge occurs on the extreme left side of the white edge pixels.
As the camera moves to the left by amounts smaller than one pixel width, the
edge moves to the right. In Figure 2.4c the edge has moved by one half of a
pixel, and the pixels along the edge now contain some part of the image that
is black and some part that is white. This will be reflected in the grey level as
a weighted average:

v = (vwaw + vbab)
aw + ab

(EQ 2.1)

where vw and vb are the grey levels of the white and black regions, and aw and
ab are the areas of the white and black parts of the edge pixel. For example, if
the white level is 100 and the black level is 0, then the value of an edge pixel
for which the edge runs through the middle will be 50. The result is a double
step instead of a step edge, as shown in Figure 2.4d.

(a)

(b)

(d) (c)

Figure 2.4: The effect of sampling on a step edge. (a) An ideal step edge. (b) Three-
dimensional view of the step edge. (c) Step edge sampled at the center of a pixel, instead
of on a margin. (d) The result, in three dimensions, has the appearance of a staircase.

If the effect of a blurred outline is to spread out the grey level change over
a number of pixels, then the single stair becomes a staircase. The ramp is a
model of what the edge must have originally looked like in order to produce
a staircase, and so is an idealization, an interpolation of the data actually
encountered.

26 Chapter 2 ■ Edge-Detection Techniques

Although the ideal step edge and ramp edge models were generally used
to devise new edge detectors in the past, the model was recognized to be a
simplification, and newer edge-detection schemes incorporate noise into the
model and are tested on staircases and noisy edges.

2.2.2 Noise
All image-acquisition processes are subject to noise of some type, so there is
little point in ignoring it; the ideal situation of no noise never occurs in practice.
Noise cannot be predicted accurately because of its random nature, and cannot
even be measured accurately from a noisy image, since the contribution to the
grey levels of the noise can’t be distinguished from the pixel data. However,
noise can sometimes be characterized by its effect on the image and is usually
expressed as a probability distribution with a specific mean and standard
deviation.

Two types of noise are of specific interest in image analysis:

Signal-independent noise

Signal-dependent noise

Signal-independent noise is a random set of grey levels, statistically indepen-
dent of the image data, added to the pixels in the image to give the resulting
noisy image. This kind of noise occurs when an image is transmitted electron-
ically from one place to another. If A is a perfect image and N is the noise that
occurs during transmission, then the final image B is:

B = A + N (EQ 2.2)

A and N are unrelated to each other. The noise image N could have any
statistical properties, but a common assumption is that it follows the normal
(Gaussian) distribution with a mean of zero and some measured or presumed
standard deviation.

It is a simple matter to create an artificially noisy image having known
characteristics, and such images are very useful tools for experimenting with
edge-detection algorithms. Figure 2.5 shows an image of a chessboard that has
been subjected to various degrees of artificial noise. For a normal distribution
with a mean of zero, the amount of noise is specified by the standard deviation;
values of 10, 20, 30, and 50 are shown in the figure.

For these images, it is possible to obtain an estimate of the noise. The scene
contains a number of small regions that should have a uniform grey level —
the squares on the chessboard. If the noise is consistent over the entire image,
the noise in any one square will be a sample of the noise in the whole image,
and since the level is constant over the square, illumination being constant,
any variation can be assumed to be caused by the noise alone. In this case, the
mean and standard deviation of the grey levels in any square can be computed;

Chapter 2 ■ Edge-Detection Techniques 27

the standard deviation of the grey levels will be close to that of the noise. To
make sure that this is working properly, we can now use the mean already
computed as the grey level of the square and compute the mean and standard
deviation of the difference of each grey level from the mean; this new mean should
be near to zero, and the standard deviation close to that of that noise (and to
the previously computed standard deviation).

(a) (b) (c)

(d) (e) (f)

Figure 2.5: Normally distributed noise and its effect on an image. (a) Original image.
(b) Noise having s = 10. (c) Noise having s = 20. (d) Noise having s = 30. (e) Noise
having s = 50. (f) Expanded view of an intersection of four regions in the s = 50 image.

A program that does this appears in Figure 2.6.
As a simple test, a black square and a white square were isolated from the

image in Figure 2.5c and this program was used to estimate the noise. The
results were:

BLACK REGION:

Image mean is 31.63629 Standard deviation is 19.52933

Noise mean is 0.00001 Standard deviation is 19.52933

WHITE REGION:

Image mean is 188.60692 Standard deviation is 19.46295

Noise mean is −0.00000 Standard deviation is 19.47054

28 Chapter 2 ■ Edge-Detection Techniques

/* Measure the Normally distributed noise in a small region.

Assume that the mean is zero. */

#include <stdio.h>

#include <math.h>

#define MAX

#include “lib.h“

main(int argc, char *argv[])

{

IMAGE im;

int i,j,k;

float x, y, z;

double mean, sd;

im = Input_PBM (argv[1]);

/* Measure */

k = 0;

x = y = 0.0;

for (i=0; i<im->info->nr; i++)

for (j=0; j<im->info->nc; j++)

{

x += (float)(im->data[i][j]);

y += (float)(im->data[i][j]) * (float)(im->data[i][j]);

k += 1;

}

/* Compute estimate - mean noise is 0 */

sd = (double)(y - x*x/(float)k)/(float)(k-1);

mean = (double)(x/(float)k);

sd = sqrt(sd);

printf (“Image mean is %10.5f Standard deviation is %10.5f\n“,
mean, sd);

/* Now assume that the uniform level is the mean, and compute the

mean and SD of the differences from that! */

x = y = z = 0.0;

for (i=0; i<im->info->nr; i++)

for (j=0; j<im->info->nc; j++)

{

z = (float)(im->data[i][j] - mean);

x += z;

y += z*z;

}

sd = (double)(y - x*x/(float)k)/(float)(k-1);

mean = (double)(x/(float)k);

sd = sqrt(sd);

printf (“Noise mean is %10.5f Standard deviation is %10.5f\n“,
mean, sd);

}

Figure 2.6: A C program for estimating the noise in an image. The input image is sampled
from the image to be measured, and must be a region that would ordinarily have a
constant grey level.

Chapter 2 ■ Edge-Detection Techniques 29

In both cases, the noise mean was very close to zero (although we have
assumed this), and the standard deviation was very close to 20, which was the
value used to create the noisy image.

The second major type of noise is called signal-dependent noise. In this case,
the level of the noise value at each point in the image is a function of the grey
level there. The grain seen in some photographs is an example of this sort of
noise, and it is generally harder to deal with. Fortunately, it is less often of
importance, and becomes manageable if the photograph is sampled properly.

Figure 2.7 shows a step edge subjected to noise of a type that can be
characterized by a normal distribution. This is an artificial edge generated by
computer, so its exact location is known. It is difficult to see this in all the
random variations, but a good edge detector should be able to determine
the edge position even in this situation.

(a) (b) (c)

Figure 2.7: (a) A step edge subjected to Gaussian (normal distribution) noise. (b) Standard
deviation is 10. (c) Standard deviation is 20. Note that the edge is getting lost in the ran-
dom noise

Returning, with less confidence, to the case of the ideal step edge, the
question of how to identify the location of the edge still remains. An edge,
based on the previous discussion, is defined by a grey level (or color) contour.
If this contour is crossed, the level changes rapidly; following the contour leads
to more subtle, possibly random, level changes. This leads to the conclusion
that an edge has a measurable direction.

Both edge pixels and noise pixels are characterized by a significant change in
grey level as compared to their surroundings. The fact that edge pixels connect
to each other to form a contour allows a distinction to be made between
the two.

30 Chapter 2 ■ Edge-Detection Techniques

There are essentially three common types of operators for locating edges.

The first type is a derivative operator designed to identify places where
there are large intensity changes.

The second type resembles a template-matching scheme, where the edge
is modeled by a small image showing the abstracted properties of a
perfect edge.

Finally, there are operators that use a mathematical model of the edge.
The best of these use a model of the noise also, and make an effort to take
it into account.

Our interest is mainly in the latter type, but examples of the first two types
will be explored first.

2.2.3 Derivative Operators
Since an edge is defined by a change in grey level, an operator that is sensitive
to this change will operate as an edge detector. A derivative operator does
this; one interpretation of a derivative is as the rate of change of a function,
and the rate of change of the grey levels in an image is large near an edge and
small in constant areas.

Since images are two dimensional, it is important to consider level changes
in many directions. For this reason, the partial derivatives of the image are
used, with respect to the principal directions x and y. An estimate of the actual
edge direction can be obtained by using the derivatives in x and y as the
components of the actual direction along the axes, and computing the vector
sum. The operator involved happens to be the gradient, and if the image is
thought of as a function of two variables A(x,y) then the gradient is defined as:

∇A(x, y) =
(

∂A
∂x

,
∂A
∂y

)
(EQ 2.3)

which is a two-dimensional vector.
Of course, an image is not a function and cannot be differentiated in the

usual way. Because an image is discrete, we use differences instead; that is, the
derivative at a pixel is approximated by the difference in grey levels over some
local region. The simplest such approximation is the operator �1:

∇x1A(x, y) = A(x, y) − A(x − 1, y)

∇y1A(x, y) = A(x, y) − A(x, y − 1) (EQ 2.4)

The assumption in this case is that the grey levels vary linearly between the
pixels, so that no matter where the derivative is taken, its value is the slope
of the line. One problem with this approximation is that it does not compute

Chapter 2 ■ Edge-Detection Techniques 31

the gradient at the point (x,y), but at (x − 1
2 , y − 1

2). The edge locations would
therefore be shifted by one half of a pixel in the −x and −y directions. A better
choice for an approximation might be �2:

∇x2A = A(x + 1, y) − A(x − 1, y)

∇y2A = A(x, y + 1) − A(x, y − 1) (EQ 2.5)

This operator is symmetrical with respect to the pixel (x,y), although it does
not consider the value of the pixel at (x,y).

Whichever operator is used to compute the gradient, the resulting vector
contains information about how strong the edge is at that pixel and what
its direction is. The magnitude of the gradient vector is the length of the
hypotenuse of the right triangle having sides and this reflects the strength of
the edge, or edge response, at any given pixel. The direction of the edge at the
same pixel is the angle that the hypotenuse makes with the axis.

Mathematically, the edge response is given by:

Gmag =
√(

∂A
∂x

)2

+
(

∂A
∂y

)2

(EQ 2.6)

and the direction of the edge is approximately:

Gdir = atan

∂A
∂y
∂A
∂x

 (EQ 2.7)

The edge magnitude will be a real number, and is usually converted to
an integer by rounding. Any pixel having a gradient that exceeds a specified
threshold value is said to be an edge pixel, and others are not. Technically,
an edge detector will report the edge pixels only, whereas edge enhancement
draws the edge pixels over the original image. This distinction will not be
important in the further discussion. The two edge detectors evaluated here
will use the middle value in the range of grey levels as a threshold.

At this point, it would be useful to see the results of the two gradient
operators applied to an image. For the purposes of evaluation of all the
methods to be presented, a standard set of test images is suggested. The basic
set appears in Figure 2.8, and noisy versions off these will also be used. Noise
will be normally distributed and have standard deviations of 3, 9, and 18. For
an edge gradient of 18 grey levels, these correspond to signal-to-noise ratios
of 6, 2, and 1, respectively. The appearance of the edge-enhanced test images
will give a rough cue about how successful the edge-detection algorithm is.

32 Chapter 2 ■ Edge-Detection Techniques

ET1-
Step edge
at j = 127,
delta = 18

ET2-
Step edge
at i = 127,
delta = 18

ET3-
Step edge
at i = j,
delta = 18

ET4-
2 part
stair, each
delta = 9

ET5-
3 part
stair, each
delta = 6

CHESS-real
sampled
image.

No added noise σ = 3
SNR = 6

σ = 9
SNR = 2

σ = 18
SNR = 1

Figure 2.8: Standard test images for edge-detector evaluation. There are three step edges
and two stairs, plus a real sampled image; all have been subjected to normally distributed
zero mean noise with known standard deviations of 3, 9, and 18.

Chapter 2 ■ Edge-Detection Techniques 33

In addition, it would be nice to have a numerical measure of how successful
an edge-detection scheme is in an absolute sense. There is no such measure in
general, but something usable can be constructed by thinking about the ways
in which an edge detector can fail or be wrong. First, an edge detector can
report an edge where none exists; this can be due to noise, thresholding, or
simply poor design, and is called a false positive. In addition, an edge detector
could fail to report an edge pixel that does exist; this is a false negative. Finally,
the position of the edge pixel could be wrong. An edge detector that reports
edge pixels in their proper positions is obviously better than one that does
not, and this must be measured somehow. Since most of the test images will
have known numbers and positions of edge pixels, and will have noise of a
known type and quantity applied, the application of the edge detectors to the
standard images will give an approximate measure of their effectiveness.

One possible way to evaluate an edge detector, based on the above discus-
sion, was proposed by Pratt [1978], who suggested the following function:

E1 =

IA∑
i=1

(
1

1 + αd(i)2

)
max(IA, II)

(EQ 2.8)

where IA is the number of edge pixels found by the edge detector, II is the
actual number of edge pixels in the test image, and the function d(i) is
the distance between the actual ith pixel and the one found by the edge
detector. The value a is used for scaling and should be kept constant for any
set of trials. A value of 1/9 will be used here, as it was used in Pratt’s work.
This metric is, as discussed previously, a function of the distance between
correct and measured edge positions, but it is only indirectly related to the
false positives and negatives.

Kitchen and Rosenfeld [1981] also present an evaluation scheme, this one
based on local edge coherence. It does not concern itself with the actual position
of an edge, and so it is a supplement to Pratt’s metric. It does concern how well
the edge pixel fits into the local neighborhood of edge pixels. The first step
is the definition of a function that measures how well an edge pixel is continued
on the left; this function is:

L(k) =

 a(d, dk)a

(
kπ
4

, d + π

2

)
if neighbor k is an edge pixel

0 Otherwise
(EQ 2.9)

where d is the edge direction at the pixel being tested, d0 is the edge direction
at its neighbor to the right, d1 is the direction of the upper-right neighbor, and
so on counterclockwise about the pixel involved. The function a is a measure

34 Chapter 2 ■ Edge-Detection Techniques

of the angular difference between any two angles:

a(α, β) = π − |α − β|
π

(EQ 2.10)

A similar function measures directional continuity on the right of the pixel
being evaluated:

R(k) =

 a(d, dk)a

(
kπ
4

, d − π

2

)
if neighbor k is an edge pixel

0 Otherwise
(EQ 2.11)

The overall continuity measure is taken to be the average of the best (largest)
value of L(k) and the best value of R(k); this measure is called C.

Then a measure of thinness is applied. An edge should be a thin line, one
pixel wide. Lines of a greater width imply that false positives exist, probably
because the edge detector has responded more than once to the same edge. The
thinness measure T is the fraction of the six pixels in the 3x3 region centered at
the pixel being measured, not counting the center and the two pixels found by
L(k) and R(k), that are edge pixels. The overall evaluation of the edge detector is:

E2 = γ C + (1 − γ)T (EQ 2.12)

where γ is a constant; we will use the value 0.8 here.
We are now prepared to evaluate the two gradient operators. Each of the

operators was applied to each of the 24 test images. Then both the Pratt and
the KR metric was taken on the results, with the following outcome. Table 2.1
gives all the evaluations for �1.

Table 2.1: Evaluation of the �1 operator

IMAGE EVALUATOR NO NOISE SNR = 6 SNR = 2 SNR = 1

ET1 EVAL1 0.965 0.9741 0.0510 0.0402
EVAL2 1.000 0.6031 0.3503 0.3494

ET2 EVAL1 0.965 0.6714 0.0484 0.3493
EVAL2 1.000 0.6644 0.3491 0.3493

ET3 EVAL1 0.9726 0.7380 0.0818 0.0564
EVAL2 0.9325 0.6743 0.3532 0.3493

ET4 EVAL1 0.4947 0.0839 0.0375 0.0354
EVAL2 0.8992 0.3338 0.3473 0.3489

ET5 EVAL1 0.9772 0.0611 0.0365 0.0354
EVAL2 0.7328 0.7328 0.3461 0.3485

The drop in quality for ET4 and ET5 is due to the operator giving a response
to each step, rather than a single overall response to the edge.

Chapter 2 ■ Edge-Detection Techniques 35

Table 2.2 gives the evaluations for �2.

Table 2.2: Evaluation of the �2 operator
IMAGE EVALUATOR NO NOISE SNR = 6 SNR = 2 SNR = 1

ET1 EVAL1 0.9727 0.8743 0.0622 0.0421
EVAL2 0.8992 0.6931 0.4167 0.4049

ET2 EVAL1 0.9726 0.9454 0.0612 0.0400
EVAL2 0.8992 0.6696 0.4032 0.4049

ET3 EVAL1 0.9726 0.9707 0.1000 0.0623
EVAL2 0.9325 0.9099 0.4134 0.4058

ET4 EVAL1 0.5158 0.4243 0.0406 0.0320
EVAL2 1.0000 0.5937 0.4158 0.4043

ET5 EVAL1 0.5062 0.1963 0.0350 0.0316
EVAL2 0.8992 0.4097 0.4147 0.4046

This operator gave two edge pixels at each point along the edge, one in each
region. As a result, each of the two pixels contributes to the distance to the
actual edge. This duplication of edge pixels should have been penalized in one
of the evaluations, but E1 does not penalize extra edge pixels as much as it
does missing ones.

It is not possible to show all the edge-enhanced images, since in this case
alone there are 48 of them. Figure 2.9 shows a selection of the results from
both operators, and from these images, and from the evaluations, it can be
concluded that �2 is slightly superior, especially where the noise is higher.

∇1

∇2

(a) (b) (c) (d)

Figure 2.9: Sample results from the gradient edge detectors. (a) Chess image (σ = 3).
(b) ET1 image (SNR = 6). (c) ET3 image (SNR = 2). (d) Chess image (σ = 18).

36 Chapter 2 ■ Edge-Detection Techniques

2.2.4 Template-Based Edge Detection
The idea behind template-based edge detection is to use a small, discrete
template as a model of an edge instead of using a derivative operator directly,
as in the previous section, or a complex, more global model, as in the next
section. The template can be either an attempt to model the level changes in the
edge, or an attempt to approximate a derivative operator; the latter appears to
be most common.

There is a vast array of template-based edge detectors. Two were chosen to
be examined here, simply because they provide the best sets of edge pixels
while using a small template. The first of these is the Sobel edge detector, which
uses templates in the form of convolution masks having the following values:

−1 −2 −1
0 0 0
1 2 1

= Sy

−1 0 1
−2 0 2
−1 0 1

= Sx

One way to view these templates is as an approximation to the gradient at
the pixel corresponding to the center of the template. Note that the weights
on the diagonal elements are smaller than the weights on the horizontal and
vertical. The x component of the Sobel operator is Sx, and the y component is
Sy; considering these as components of the gradient means that the magnitude
and direction of the edge pixel is given by Equations 2.6 and 2.7.

For a pixel at image coordinates (i,j), Sx and Sy can be computed by:

Sx = I[i − 1][j + 1] + 2I[i][j + 1] + I[i + 1][j + 1]

− (I[i − 1][j − 1] + 2I[i][j − 1] + I[i + 1][j − 1])

Sy = I[i + 1][j + 1] + 2I[i + 1][j] + I[i + 1][j − 1]

− (I[i − 1][j + 1] + 2I[i − 1][j] + I[i − 1][j − 1])

which is equivalent to applying the operator ∇1 to each 2x2 portion of the
3x3 region, and then averaging the results. After Sx and Sy are computed
for every pixel in an image, the resulting magnitudes must be thresholded.
All pixels will have some response to the templates, but only the very large
responses will correspond to edges. The best way to compute the magnitude
is by using Equation 2.6, but this involves a square root calculation that is both
intrinsically slow and requires the use of floating point numbers. Optionally,
we could use the sum of the absolute values of Sx and Sy (that is: |Sx| + |Sy|) or
even the largest of the two values. Thresholding could be done using almost

Chapter 2 ■ Edge-Detection Techniques 37

any standard method. Sections 2.4 and 2.5 describe some techniques that are
specifically intended for use on edges.

The second example of the use of templates is the one described by Kirsch,
and were selected as an example here because these templates have a different
motivation than Sobel’s. For the 3x3 case, the templates are as follows:

K0 =
−3 −3 5
−3 0 5
−3 −3 5

K1 =
−3 5 5
−3 0 5
−3 −3 −3

K2 =
5 5 5

−3 0 −3
−3 −3 −3

K3 =
5 5 −3
5 0 −3

−3 −3 −3

K4 =
5 −3 −3
5 0 −3
5 −3 −3

K5 =
−3 −3 −3

5 0 −3
5 5 −3

K6 =
−3 −3 −3
−3 0 −3

5 5 5
K7 =

−3 −3 −3
−3 0 5
−3 5 5

These masks are an effort to model the kind of grey level change seen
near an edge having various orientations, rather than an approximation to the
gradient. There is one mask for each of eight compass directions. For example,
a large response to mask K0 implies a vertical edge (horizontal gradient)
at the pixel corresponding to the center of the mask. To find the edges, an
image I is convolved with all the masks at each pixel position. The response
of the operator at a pixel is the maximum of the responses of any of the eight
masks. The direction of the edge pixel is quantized into eight possibilities
here and is π/4 ∗ i, where i is the number of the mask having the largest
response.

Both of these edge detectors were evaluated using the test images of
Figure 2.8. Table 2.3 shows the results.

Table 2.3: Evaluation of the Sobel edge detector
IMAGE EVALUATOR NO NOISE SNR = 6 SNR = 2 SNR = 1

ET1 EVAL1 0.9727 0.9690 0.1173 0.0617
EVAL2 0.8992 0.8934 0.4474 0.4263

ET2 EVAL1 0.9726 0.9706 0.1609 0.0526
EVAL2 0.8992 0.8978 0.4215 0.4255

ET3 EVAL1 0.9726 0.9697 0.1632 0.0733
EVAL2 0.9325 0.9186 0.4349 0.4240

ET4 EVAL1 0.4860 0.4786 0.0595 0.0373
EVAL2 0.7328 0.6972 0.4426 0.4266

ET5 EVAL1 0.4627 0.3553 0.0480 0.0355
EVAL2 0.7496 0.6293 0.4406 0.4250

38 Chapter 2 ■ Edge-Detection Techniques

Table 2.4 shows the results for the Kirsch operator.

Table 2.4: Evaluation of the Kirsch edge detector
IMAGE EVALUATOR NO NOISE SNR = 6 SNR = 2 SNR = 1

ET1 EVAL1 0.9727 0.9727 0.1197 0.0490
EVAL2 0.8992 0.8992 0.4646 0.4922

ET2 EVAL1 0.9726 0.9726 0.1517 0.0471
EVAL2 0.8992 0.8992 0.4528 0.4911

ET3 EVAL1 0.9726 0.9715 0.1458 0.0684
EVAL2 0.9325 0.9200 0.4708 0.4907

ET4 EVAL1 0.4860 0.4732 0.0511 0.0344
EVAL2 0.7328 0.7145 0.4819 0.4907

ET5 EVAL1 0.4627 0.3559 0.0412 0.0339
EVAL2 0.7496 0.6315 0.5020 0.4894

Figure 2.10 shows the response of these templates applied to a selection of
the test images. Based on the evaluations and the appearance of the test images
the Kirsch operator appears to be the best of the two template operators,
although the two are very close. Both template operators are superior to the
simple derivative operators, especially as the noise increases.

Note that in all the cases studied so far, unspecified aspects to the
edge-detection methods will have an impact on their efficacy. Principal among
these is the thresholding method used, but sometimes simple noise removal
is done beforehand and edge thinning is done afterward. The model-based
methods that follow generally include these features, sometimes as part of the
edge model.

Sobel

Kirsch

(a) (b) (c) (d)

Figure 2.10: Sample results from the template-based edge detectors. (a) Chess image,
noise s = 3. (b) ET1, SNR = 6. (c) ET3, SNR = 2. (d) Chess image, noise s = 18.

Chapter 2 ■ Edge-Detection Techniques 39

2.3 Edge Models: The Marr-Hildreth
Edge Detector

In the late 1970s, David Marr attempted to combine what was known about
biological vision into a model that could be used for machine vision. According
to Marr, ‘‘ . . . the purpose of early visual processing is to construct a primitive but
rich description of the image that is to be used to determine the reflectance and
illumination of the visible surfaces, and their orientation and distance relative to the
viewer’’ [Marr 1980]. He called the lowest level description the primal sketch, a
major component of which are the edges.

Marr studied the literature on mammalian visual systems and summarized
these in five major points:

1. In natural images, features of interest occur at a variety of scales. No single
operator can function at all of these scales, so the result of operators at
each of many scales should be combined.

2. A natural scene does not appear to consist of diffraction patterns or other
wave-like effects, and so some form of local averaging (smoothing) must
take place.

3. The optimal smoothing filter that matches the observed requirements of
biological vision (smooth and localized in the spatial domain and smooth
and band-limited in the frequency domain) is the Gaussian.

4. When a change in intensity (an edge) occurs there is an extreme value in
the first derivative or intensity. This corresponds to a zero crossing in the
second derivative.

5. The orientation independent differential operator of lowest order is the
Laplacian.

Each of these points is either supported by the observation of vision systems
or derived mathematically, but the overall grounding of the resulting edge
detector is still a little loose. However, based on the preceding five points, an
edge-detection algorithm can be stated as follows:

1. Convolve the image I with a two-dimensional Gaussian function.

2. Compute the Laplacian of the convolved image; call this L.

3. Find the edge pixels — those for which there is a zero crossing in L.

The results of convolutions with Gaussians having a variety of standard
deviations are combined to form a single edge image. Standard deviation is a
measure of scale in this instance.

40 Chapter 2 ■ Edge-Detection Techniques

The algorithm is not difficult to implement, although it is more difficult than
the methods seen so far. A convolution in two dimensions can be expressed as:

I ∗ G(i, j) =
∑

n

∑
m

I(n, m)G(i − n, j − m) (EQ 2.13)

The function G being convolved with the image is a two-dimensional
Gaussian, which is:

Gσ (x, y) = σ 2e

−(x2 + y2)
σ 2 (EQ 2.14)

To perform the convolution on a digital image, the Gaussian must be
sampled to create a small two-dimensional image. This is convolved with the
image, after which the Laplacian operator can be applied. This is:

∇2 = ∂2

∂x2
+ ∂2

∂y2
(EQ 2.15)

and could be computed using differences. However, since order does not
matter in this case, we could compute the Laplacian of the Gaussian (LoG)
analytically and sample that function, creating a convolution mask that can be
applied to the image to yield the same result. The LoG is:

∇2Gσ =
(

r2 − 2σ 2

σ 4

)
e
(−r

2σ2

)
(EQ 2.16)

where r = √
x2 + y2 . This latter approach is the one taken in the C code

implementing this operator, which appears at the end of this chapter.
This program first creates a two-dimensional, sampled version of the LoG

(called lgau in the function marr) and convolves this in the obvious way with
the input image (function convolution). Then the zero crossings are identified
and pixels at those positions are marked.

A zero crossing at a pixel P implies that the values of the two opposing
neighboring pixels in some direction have different signs. For example, if the
edge through P is vertical then the pixel to the left of P will have a different
sign than the one to the right of P. There are four cases to test: up/down,
left/right, and the two diagonals. This test is performed for each pixel in the
LoG by the function zero_cross.

In order to ensure that a variety of scales are used, the program uses
two different Gaussians, and selects the pixels that have zero crossings in both
scales as output edge pixels. More than two Gaussians could be used, of course.
The program marr.c reads the image input file name from the standard input,
and also accepts a standard deviation value s as a parameter. It then uses both

Chapter 2 ■ Edge-Detection Techniques 41

σ+0.8 and σ−0.8 as standard deviation values, does two convolutions, locates
two sets of zero crossings, and merges the resulting edge pixels into a single
image. The result is displayed and is stored in a file named marr.jpg.

Figure 2.11 illustrates the steps in this process, using the chess image (no
noise) as an example. Figures 2.11a and b shows the original image after
being convolved with the LoGs, having σ values of 1.2 and 2.8, respectively.
Figures 2.11c and 2.11d are the responses from these two different values
of σ , and Figure 2.11e shows the result of merging the edge pixels in these
two images.

(a) (b) (c) (d) (e)

Figure 2.11: Steps in the computation of the Marr-Hildreth edge detector. (a) Convolution
of the original image with the LoG having σ = 1.2. (b) Convolution of the image with
the LoG having σ = 2.8. (c) Zero crossings found in (a). (d) Zero crossings found in (b).
(e) Result, found by using zero crossings common to both.

Figure 2.12 shows the result of the Marr-Hildreth edge detector applied to
the all the test images of Figure 2.8.

ET1 SNR = 6 ET1 SNR = 2 ET1 SNR = 1 ET1 SNR = 6 ET1 SNR = 2 ET1 SNR = 1

ET3 SNR = 6 ET3 SNR = 2 ET3 SNR = 1 ET4 SNR = 6 ET4 SNR = 2 ET4 SNR = 1

ET5 SNR = 6 ET5 SNR = 2 ET5 SNR = 1 Chess σ = 3 Chess σ = 9 Chess σ = 18

Figure 2.12: Edges from the test images as found by the Marr-Hildreth algorithm, using
two resolution values.

42 Chapter 2 ■ Edge-Detection Techniques

In addition, the evaluation of this operator is given in Table 2.5.

Table 2.5: Evaluation of the Marr-Hildreth edge detector
IMAGE EVALUATOR NO NOISE SNR = 6 SNR = 2 SNR = 1

ET1 EVAL1 0.8968 0.7140 0.7154 0.2195
EVAL2 0.9966 0.7832 0.6988 0.7140

ET2 EVAL1 0.6948 0.6948 0.6404 0.1956
EVAL2 0.9966 0.7801 0.7013 0.7121

ET3 EVAL1 0.7362 0.7319 0.7315 0.2671
EVAL2 0.9133 0.7766 0.7052 0.7128

ET4 EVAL1 0.4194 0.4117 0.3818 0.1301
EVAL2 0.8961 0.7703 0.6981 0.7141

ET5 EVAL1 0.3694 0.3822 0.3890 0.1290
EVAL2 0.9966 0.7626 0.6995 0.7141

The evaluations above tend to be low. Because of the width of the Gaussian
filter, the pixels that are a distance less than about 4σ from the boundary of
the image are not processed; hence, E1 thinks of these as missing edge pixels.
When this is taken into account, the evaluation using ET1 with no noise, as
an example, becomes 0.9727. Some of the other low evaluations, on the other
hand, are the fault of the method. Locality is not especially good, and the edges
are not always thin. Still, this edge detector is much better than the previous
ones in cases of low signal-to-noise ratio.

2.4 The Canny Edge Detector

In 1986, John Canny defined a set of goals for an edge detector and described
an optimal method for achieving them.

Canny specified three issues that an edge detector must address. In plain
English, these are:

Error rate — The edge detector should respond only to edges, and should
find all of them; no edges should be missed.

Localization — The distance between the edge pixels as found by the
edge detector and the actual edge should be as small as possible.

Response — The edge detector should not identify multiple edge pixels
where only a single edge exists.

These seem reasonable enough, especially since the first two have already
been discussed and used to evaluate edge detectors. The response criterion
seems very similar to a false positive, at first glace.

Chapter 2 ■ Edge-Detection Techniques 43

Canny assumed a step edge subject to white Gaussian noise. The edge
detector was assumed to be a convolution filter f which would smooth the
noise and locate the edge. The problem is to identify the one filter that
optimizes the three edge-detection criteria.

In one dimension, the response of the filter f to an edge G is given by a
convolution integral:

H =
W∫

−W

G(−x)f (x)dx (EQ 2.17)

The filter is assumed to be zero outside of the region [−W, W]. Mathemati-
cally, the three criteria are expressed as:

SNR =
A
∣∣∣∣�0

−W
f (x)dx

∣∣∣∣
n0

√
�

w

−W
f 2(x)dx

(EQ 2.18)

Localization = A|f (0)|

n0

√
�

W

−W
f 2dx

(EQ 2.19)

xzc = π

�

∞

−∞
f 2(x)dx

�
∞

−∞
f 2(x)dx

1
2

(EQ 2.20)

The value of SNR is the output signal-to-noise ratio (error rate), and should
be as large as possible: we need a lot of signal and little noise. The localization
value represents the reciprocal of the distance of the located edge from the true
edge, and should also be as large as possible, which means that the distance
would be as small as possible. The value xzc is a constraint; it represents the
mean distance between zero crossings of f , and is essentially a statement that
the edge detector f will not have too many responses to the same edge in a
small region.

Canny attempts to find the filter f that maximizes the product SNR ∗ local-
ization subject to the multiple response constraint. Although the result is too
complex to be solved analytically, an efficient approximation turns out to be
the first derivative of a Gaussian function. Recall that a Gaussian has the form:

G(x) = e− x2

2σ 2 (EQ 2.21)

44 Chapter 2 ■ Edge-Detection Techniques

The derivative with respect to x is therefore

G′(x) =
(
− x

σ 2

)
e
−
(

x2

2σ 2

)
(EQ 2.22)

In two dimensions, a Gaussian is given by

G(x, y) = σ 2e
−
(

x2+y2

2σ 2

)
(EQ 2.23)

and G has derivatives in both the x and y directions. The approximation to
Canny’s optimal filter for edge detection is G’, and so by convolving the input
image with G’, we obtain an image E that has enhanced edges, even in the pres-
ence of noise, which has been incorporated into the model of the edge image.

A convolution is fairly simple to implement, but is expensive computation-
ally, especially a two-dimensional convolution. This was seen in the Marr
edge detector. However, a convolution with a two dimensional Gaussian can
be separated into two convolutions with one-dimensional Gaussians, and the
differentiation can be done afterwards. Indeed, the differentiation can also
be done by convolutions in one dimension, giving two images: one is the x
component of the convolution with G’ and the other is the y component.

Thus, the Canny edge-detection algorithm to this point is:

1. Read in the image to be processed, I.

2. Create a one-dimensional Gaussian mask G to convolve with I. The
standard deviation(s) of this Gaussian is a parameter to the edge detector.

3. Create a one-dimensional mask for the first derivative of the Gaussian in
the x and y directions; call these Gx and Gy. The same s value is used as
in step 2.

4. Convolve the image I with G along the rows to give the x component
image Ix, and down the columns to give the y component image Iy.

5. Convolve Ix with Gx to give Ix’, the x component of I convolved with the
derivative of the Gaussian, and convolve Iy with Gy to give Iy’.

6. Compute the magnitude of the edge response (i.e., if you want to view the
result at this point) by combining the x and y components. The magnitude
of the result can be computed at each pixel (x,y) as:

M(x, y) =
√

I′
x(x, y)2 + I′

y(x, y)2

Chapter 2 ■ Edge-Detection Techniques 45

The magnitude is computed in the same manner as it was for the gradient,
which is in fact what is being computed.

A complete C program for a Canny edge detector is given at the end of
this chapter, but some explanation is relevant at this point. The main program
opens the image file and reads it, and also reads in the parameters, such as
s. It then calls the function canny, which does most of the actual work. First,
canny computes the Gaussian filter mask (called gau in the program) and the
derivative of a Gaussian filter mask (called dgau). The size of the mask to be
used depends on s; for small s the Gaussian will quickly become zero, resulting
in a small mask. The program determines the needed mask size automatically.

Next, the function computes the convolution as in step 4 above. The C
function separable_convolution does this, being given the input image and
the mask and returning the x and y parts of the convolution (called smx and smy

in the program; these are floating-point 2D arrays). The convolution of step 5
above is then calculated by calling the C function dxy_seperable_convolution

twice, once for x and once for y. The resulting real images (called dx and dy

in the program) are the x and y components of the image convolved with
G’. The function norm will calculate the magnitude given any pair of x and y
components.

The final step in the edge detector is a little curious at first and needs some
explanation. The value of the pixels in M is large if they are edge pixels and
smaller if not, so thresholding could be used to show the edge pixels as white
and the background as black. This does not give very good results; what must
be done is to threshold the image based partly on the direction of the gradient
at each pixel. The basic idea is that edge pixels have a direction associated
with them; the magnitude of the gradient at an edge pixel should be greater
than the magnitude of the gradient of the pixels on each side of the edge. The
final step in the Canny edge detector is a non-maximum suppression step, where
pixels that are not local maxima are removed.

Figure 2.13 attempts to shed light on this process by using geometry.
Part a of this figure shows a 3x3 region centered on an edge pixel, which
in this case is vertical. The arrows indicate the direction of the gradient at
each pixel, and the length of the arrows is proportional to the magnitude
of the gradient. Here, non-maximal suppression means that the center pixel,
the one under consideration, must have a larger gradient magnitude than
its neighbors in the gradient direction; these are the two pixels marked with
an ‘‘x’’. That is: from the center pixel, travel in the direction of the gradient
until another pixel is encountered; this is the first neighbor. Now, again
starting at the center pixel, travel in the direction opposite to that of the
gradient until another pixel is encountered; this is the second neighbor.
Moving from one of these to the other passes though the edge pixel in a
direction that crosses the edge, so the gradient magnitude should be largest at
the edge pixel.

46 Chapter 2 ■ Edge-Detection Techniques

In this specific case, the situation is clear. The direction of the gradient is
horizontal, and the neighboring pixels used in the comparison are exactly the
left and right neighbors. Unfortunately, this does not happen very often. If the
gradient direction is arbitrary, then following that direction will usually take
you to a point in between two pixels. What is the gradient there? Its value
cannot be known for certain, but it can be estimated from the gradients of the
neighboring pixels. It is assumed that the gradient changes continuously as a
function of position, and that the gradient at the pixel coordinates are simply
sampled from the continuous case. If it is further assumed that the change in
the gradient between any two pixels is a linear function, then the gradient at
any point between the pixels can be approximated by a linear interpolation.

X

y

y

(a)

X

XX

(b) (c)

A Ax

Ay B

C

Figure 2.13: Non-maximum suppression. (a) Simple case, where the gradient direction is
horizontal. (b) Most cases have gradient directions that are not horizontal or vertical, so
there is no exact gradient at the desired point. (c) Gradients at pixels neighboring A are
used to estimate the gradient at the location marked with ‘‘+.’’

A more general case is shown in Figure 2.13b. Here, the gradients all point
in different directions, and following the gradient from the center pixel now
takes us in between the pixels marked ‘‘x’’. Following the direction opposite
to the gradient takes us between the pixels marked ‘‘y’’. Let’s consider only
the case involving the ‘‘x’’ pixels, as shown in Figure 2.13c, since the other
case is really the same. The pixel named A is the one under consideration, and
pixels B and C are the neighbors in the direction of the positive gradient. The
vector components of the gradient at A are Ax and Ay, and the same naming
convention will be used for B and C.

Each pixel lies on a grid line having an integer x and y coordinate. This
means that pixels A and B differ by one distance unit in the x direction. It must
be determined which grid line will be crossed first when moving from A in the
gradient direction. Then the gradient magnitude will be linearly interpolated
using the two pixels on that grid line and on opposite sides of the crossing

Chapter 2 ■ Edge-Detection Techniques 47

point, which is at location (Px, Py). In Figure 2.13 the crossing point is marked
with a ‘‘+’’, and is in between B and C. The gradient magnitude at this point
is estimated as

G = (Py − Cy)Norm(C) + (By − Py)Norm(B) (EQ 2.24)

where the norm function computes the gradient magnitude.
Every pixel in the filtered image is processed in this way; the gradient

magnitude is estimated for two locations, one on each side of the pixel, and the
magnitude at the pixel must be greater than its neighbors’. In the general case
there are eight major cases to check for, and some short cuts that can be made
for efficiency’s sake, but the above method is essentially what is used in most
implementations of the Canny edge detector. The function nonmax_suppress

in the C source at the end of the chapter computes a value for the magnitude
at each pixel based on this method, and sets the value to zero unless the pixel
is a local maximum.

It would be possible to stop at this point and use the method to enhance
edges. Figure 2.14 shows the various stages in processing the chessboard test
image of Figure 2.8 (no added noise).

(a) (b) (c)

(d) (e) (f)

Figure 2.14: Intermediate results from the Canny edge detector. (a) X component of the
convolution with a Gaussian. (b) Y component of the convolution with a Gaussian. (c) X
component of the image convolved with the derivative of a Gaussian. (d) Y component
of the image convolved with the derivative of a Gaussian. (e) Resulting magnitude image.
(f) After non-maximum suppression.

The stages are: computing the result of convolving with a Gaussian in the x
and y directions (Figures 2.14a and b); computing the derivatives in the x and

48 Chapter 2 ■ Edge-Detection Techniques

y directions (Figure 2.14c and d); computing the magnitude of the gradient
before non-maximal suppression (Figure 2.14e) and again after non-maximal
suppression (Figure 2.14f). This last image still contains grey-level values
and needs to be thresholded to determine which pixels are edge pixels and
which are not. As an extra, but novel, step, Canny suggests thresholding using
hysteresis rather than simply selecting a threshold value to apply everywhere.

Hysteresis thresholding uses a high threshold Th and a low threshold Tl.
Any pixel in the image that has a value greater than Th is presumed to be
an edge pixel, and is marked as such immediately. Then, any pixels that are
connected to this edge pixel and that have a value greater than Tl are also
selected as edge pixels, and are marked too. The marking of neighbors can be
done recursively, as it is in the function hysteresis, or by performing multiple
passes through the image.

Figure 2.15 shows the result of adding hysteresis thresholding after
non-maximum suppression. 2.15a is an expanded piece of Figure 2.14f,
showing the pawn in the center of the board. The grey levels have been
slightly scaled so that the smaller values can be seen clearly. A low threshold
(2.15b) and a high threshold (2.15c) have been globally applied to the
magnitude image, and the result of hysteresis thresholding is given in
Figure 2.15d.

(a) (b) (c) (d)

Figure 2.15: Hysteresis thresholding. (a) Enlarged portion of Figure 2.14f. (b) This portion
after thresholding with a single low threshold. (c) After thresholding with a single high
threshold. (d) After hysteresis thresholding.

Examples of results from this edge detector will be seen in Section 2.6.

2.5 The Shen-Castan (ISEF) Edge Detector

Canny’s edge detector defined optimality with respect to a specific set of
criteria. Although these criteria seem reasonable enough, there is no compelling

Chapter 2 ■ Edge-Detection Techniques 49

reason to think they are the only ones possible. This means that the concept
of optimality is a relative one, and that a better (in some circumstances) edge
detector than Canny’s is a possibility. In fact, sometimes it seems as though
the comparison taking place is between definitions of optimality, rather than
between edge-detection schemes.

Shen and Castan agree with Canny about the general form of the edge
detector: a convolution with a smoothing kernel followed by a search for edge
pixels. However, their analysis yields a different function to optimize: namely,
they suggest minimizing (in one dimension):

C2
N =

4
∞∫
0

f 2(x)dx ·
∞∫
0

f ′2(x)dx

f 4(0)
(EQ 2.25)

That is: The function that minimizes CN is the optimal smoothing filter for
an edge detector. The optimal filter function they came up with is the infinite
symmetric exponential filter (ISEF):

f (x) = p
2

e−p|x| (EQ 2.26)

Shen and Castan maintain that this filter gives better signal-to-noise ratios
than Canny’s filter, and provides better localization. This could be because
the implementation of Canny’s algorithm approximates his optimal filter by the
derivative of a Gaussian, whereas Shen and Castan use the optimal filter directly,
or it could be due to a difference in the way the different optimality criteria
are reflected in reality. On the other hand, Shen and Castan do not address the
multiple response criterion, and, as a result, it is possible that their method
will create spurious responses to noisy and blurred edges.

In two dimensions the ISEF is:

f (x, y) = a · e−p(|x|+|y|) (EQ 2.27)

which can be applied to an image in much the same way as was the derivative
of Gaussian filter, as a 1D filter in the x direction, then in the y direction.
However, Shen and Castan went one step further and gave a realization of
their filter as one dimensional recursive filters. Although a detailed discussion
of recursive filters is beyond the scope of this book, a quick summary of this
specific case may be useful.

The filter function f above is a real, continuous function. It can be rewritten
for the discrete, sampled case as:

f [i, j] = (1 − b)b|x|+|y|

1 + b
(EQ 2.28)

50 Chapter 2 ■ Edge-Detection Techniques

where the result is now normalized, as well. To convolve an image with this
filter, recursive filtering in the x direction is done first, giving r[i,j]:

y1[i, j] = 1 − b
1 + b

I[i, j] + by1[i, j − 1], j = 1 . . . N, i = 1 . . . M

y2[i, j] = b
1 − b
1 + b

I[i, j] + by1[i, j + 1], j = N . . . 1, i = 1 . . . M

r[i, j] = y1[i, j] + y2[i, j + 1] (EQ 2.29)

with the boundary conditions:

I[i, 0] = 0

y1[i, 0] = 0

y2[i, M + 1] = 0 (EQ 2.30)

Then filtering is done in the y direction, operating on r[i,j] to give the final
output of the filter, y[i,j]:

y1[i, j] = 1 − b
1 + b

I[i, j] + by1[i − 1, j], i = 1 . . . M, j = 1 . . . N

y2[i, j] = b
1 − b
1 + b

I[i, j] + by1[i + 1, j], i = N . . . 1, j = 1 . . . N

y[i, j] = y1[i, j] + y2[i + 1, j] (EQ 2.31)

with the boundary conditions:

I[0, j] = 0

y1[0, j] = 0

y2[N + 1, j] = 0 (EQ 2.32)

The use of recursive filtering speeds up the convolution greatly. In the ISEF
implementation at the end of the chapter the filtering is performed by the
function ISEF, which calls ISEF_vert to filter the rows (Equation 2.29) and
ISEF_horiz to filter the columns (Equation 2.31). The value of b is a parameter
to the filter, and is specified by the user.

All the work to this point simply computes the filtered image. Edges are
located in this image by finding zero crossings of the Laplacian, a process
similar to that undertaken in the Marr-Hildreth algorithm. An approximation
to the Laplacian can be obtained quickly by simply subtracting the original
image from the smoothed image. That is, if the filtered image is S and the
original is I, we have:

S[i, j] − I[i, j] ≈ 1
4a2

I[i, j] ∗ ∇2f (i, j) (EQ 2.33)

Chapter 2 ■ Edge-Detection Techniques 51

The resulting image B = S-I is the band-limited Laplacian of the image. From
this the binary Laplacian image (BLI) is obtained by setting all the positive
valued pixels in B to 1 and all others to 0; this is calculated by the C function
compute_bli in the ISEF source code provided. The candidate edge pixels
are on the boundaries of the regions in BLI, which correspond to the zero
crossings. These could be used as edges, but some additional enhancements
improve the quality of the edge pixels identified by the algorithm.

The first improvement is the use of false zero-crossing suppression, which is
related to the non-maximum suppression performed in the Canny approach.
At the location of an edge pixel there will be a zero crossing in the second
derivative of the filtered image. This means that the gradient at that point is
either a maximum or a minimum. If the second derivative changes sign from
positive to negative, this is called a positive zero crossing, and if it changes from
negative to positive, it is called a negative zero crossing. We will allow positive
zero crossings to have a positive gradient, and negative zero crossings to have
a negative gradient. All other zero crossings are assumed to be false (spurious)
and are not considered to correspond to an edge. This is implemented in the
function is_candidate_edge in the ISEF code.

In situations where the original image is very noisy, a standard thresholding
method may not be sufficient. The edge pixels could be thresholded using
a global threshold applied to the gradient, but Shen and Castan suggest an
adaptive gradient method. A window with fixed width W is centered at candidate
edge pixels found in the BLI. If this is indeed an edge pixel, then the window
will contain two regions of differing grey level separated by an edge (zero
crossing contour). The best estimate of the gradient at that point should be the
difference in level between the two regions, where one region corresponds to
the zero pixels in the BLI and the other corresponds to the one-valued pixels.
The function compute_adaptive_gradient performs this activity.

Finally, a hysteresis thresholding method is applied to the edges. This
algorithm is basically the same as the one used in the Canny algorithm,
adapted for use on an image where edges are marked by zero crossings. The
C function threshold_edges performs hysteresis thresholding.

2.6 A Comparison of Two Optimal Edge Detectors

The two signal edge detectors examined in this chapter are the Canny operator
and the Shen-Castan method. A good way to end the discussion of edge
detection may be to compare these two approaches against each other.

To summarize the two methods, the Canny algorithm convolves the image
with the derivative of a Gaussian, and then performs non-maximum sup-
pression and hysteresis thresholding. The Shen-Castan algorithm convolves
the image with the Infinite Symmetric Exponential Filter, computes the BLI,

52 Chapter 2 ■ Edge-Detection Techniques

suppresses false zero crossings, performs adaptive gradient thresholding, and
finally also applies hysteresis thresholding. In both methods, as with Marr and
Hildreth, the authors suggest the use of multiple resolutions.

Both algorithms offer user-specified parameters, which can be useful for
tuning the method to a particular class of images. The parameters are:

Canny Shen-Castan (ISEF)

Sigma (standard deviation) 0<=b<=1.0 (smoothing factor)

High hysteresis threshold High hysteresis threshold

Low hysteresis threshold Low hysteresis threshold

Width of window for adaptive gradient

Thinning factor

The algorithms were implemented according to the specification laid out in
the original articles describing them. It should be pointed out that the various
parts of the algorithms could be applied to both methods; for example, a thin-
ning factor could be added to Canny’s algorithm, or it could be implemented
using recursive filters. Exploring all possible permutations and combinations
would be a massive undertaking.

Figure 2.16 shows the result of applying the Canny and the Shen-Castan
edge detectors to the test images. Because the Canny implementation uses a
wrap-around scheme when performing the convolution, the areas near the
boundary of the image are occupied with black pixels, although sometimes
with what appears to be noise. The ISEF implementation uses recursive
filters, and the wrap-around was more difficult to implement; it was not, in
fact, implemented. Instead, the image was embedded in a larger one before
processing. As a result, the boundary of these images is mostly white where
the convolution mask exceeded the image.

The two methods were evaluated using E1 and E2, even though flaws have
been found with E1. ISEF seems to have the advantage as noise becomes
greater, at least for the E1 metric, as shown in Table 2.6.

Canny has the advantage using the E2 metric, as shown in Table 2.7.
Overall, the ISEF edge detector is ranked first by a slight margin over Canny,

which is second. Marr-Hildreth is third, followed by Kirsch, Sobel, �2 and � 1

in that order. The comparison between Canny and ISEF does depend on the
parameters selected in each case, and it is likely that better evaluations can be
found that use a better choice of parameters. In some of these the Canny edge
detector will come out ahead, and in some the ISEF method will win. The best
set of parameters for a particular image is not known, and so ultimately the
user is left to judge the methods.

Chapter 2 ■ Edge-Detection Techniques 53

Table 2.6: Evaluation of Canny VS ISEF: E1
IMAGE EVALUATOR NO NOISE SNR = 6 SNR = 2 SNR = 1

ET1 Canny 0.9651 0.9498 0.5968 0.1708
ISEF 0.9689 0.9285 0.7929 0.7036

ET2 Canny ISEF 0.9650 0.9155 0.6991 0.2530
Canny ISEF 0.9650 0.9338 0.8269 0.7170

ET3 Canny ISEF 0.8776 0.9015 0.7347 0.5238
Canny ISEF 0.8776 0.9015 0.7347 0.5238

ET4 Canny ISEF 0.5157 0.5092 0.3201 0.1103
Canny ISEF 0.4686 0.4787 0.4599 0.4227

ET5 Canny ISEF 0.5024 0.4738 0.3008 0.0955
Canny ISEF 0.4957 0.4831 0.4671 0.4074

Table 2.7: Evaluation Canny VS ISEF: E2
IMAGE EVALUATOR NO NOISE SNR = 6 SNR = 2 SNR = 1

ET1 Canny 1.0000 0.5152 0.5402 0.5687
ISEF 1.0000 0.9182 0.5756 0.5147

ET2 Canny ISEF 1.0000 0.6039 0.5518 0.5726
Canny ISEF 1.0000 0.9462 0.6018 0.5209

ET3 Canny ISEF 0.9291 0.7541 0.6032 0.5899
Canny ISEF 0.9965 0.9424 0.5204 0.4829

ET4 Canny 1.0000 0.7967 0.5396 0.5681
ISEF 1.0000 0.5382 0.5193 0.5096

ET5 Canny ISEF 1.0000 0.5319 0.5269 0.5706
Canny ISEF 0.9900 0.6162 0.5243 0.5123

2.7 Color Edges

So far, only edges created by a change in brightness, as indicated by grey level
value, have been examined. This involves probably 90% of edges of interest
in real problems, but not all of them. It turns out that changes in color, or
hue, are not always detected by the edge detectors described so far. If edges
are the boundaries of objects, then boundaries that are marked by color alone
should be detectable, and because most images involve color it is important to
consider it when looking for edges.

There are two main ways that color edges are located. One method is to apply
one of the edge detectors already discussed to each of the color channels —
red, green, and blue — and then to merge the three results into a single result.
The other method involves multi-dimensional gradients, or partial derivatives.
The former scheme is pretty obvious and easy to implement. The code already
exists to apply any of the methods already discussed to any grey level image,
and a red, green, or blue component image is effectively grey, consisting as it
does of 8-bit pixels.

54 Chapter 2 ■ Edge-Detection Techniques

Canny

ET1

SNR = 6

SNR = 2

SNR = 1

SNR = 6

SNR = 2

SNR = 1

ET3SNR = 2

SNR = 1

ET2

SNR = 6

ISEF Canny ISEF

Figure 2.16: Side-by-side comparison of the output of the Canny and Shen-Castan (ISEF)
edge detectors. All of the test images from figure 2.8 have been processed by both
algorithms, and the output appears here and on the next page.

Chapter 2 ■ Edge-Detection Techniques 55

Canny

ET4

SNR = 6

SNR = 2

SNR = 1

σ = 3

σ = 9

σ = 18

Chess
SNR = 2

SNR = 1

ET5

SNR = 6

ISEF Canny ISEF

Figure 2.16: (Continued)

56 Chapter 2 ■ Edge-Detection Techniques

The following is the basic code for applying the Sobel algorithm to each
color channel:

if(get_RGB(&x, &y, &z, image_name))

{

sobel (x);

sobel (y);

sobel (z);

for (i=0; i<x->info->nr; i++)

for (j=0; j<x->info->nc; j++)

x->data[i][j] = 255 - (x->data[i][j]+y->data[i][j] +

z->data[i][j])/3;

save_iamge (x, out_name);

}

This precise scheme gives the image results shown in Figure 2.17.

(a) (b) (c)

Figure 2.17: (a) The original color image to be processed. (b) The result of converting the
image to grey and finding images. (c) The result of applying the Sobel operator to each
color channel and then merging the results.

The target image consists of four distinctly colored squares (Figure 2.17a).
If the image is converted into grey levels, or pure intensity, the Sobel edges
detected are those seen in Figure 2.17b; two are clearly missing. Figure 2.17c
is the results of thresholding the image created by averaging the values found
but applying the Sobel operator to each of the color components.

A reason that RGB values are not as good as some other color coding
schemes for many vision tasks is that they include a significant proportion of
intensity. Each color component is the intensity of that color within the whole
pixel, and intensity is what is recognized by other edge detectors. A more
pure representation of color would be desirable for finding color edges using
a differential operator.

In one of the first publications on the subject, Nevatia [1977] suggests using
new values T1 and T2 instead of RGB:

T1 = R
R + G + B

(EQ 2.34)T2 = G
R + G + B

Chapter 2 ■ Edge-Detection Techniques 57

T1 and T2 are variables only involving color. Any local change in T1 or T2 can
be indicative of a color edge. Results of applying a Sobel operator to T1 and
T2 can be seen in Figure 2.18.

(a) (b)

Figure 2.18: Sobel edges found using (a) T1 color metric and (b) T2 color metric.

A more traditional (and difficult) calculation is to find the hue, the value
of the color portion of a pixel. Hue is the ‘‘H’’ part of the HSV color system,
which can be found described in dozens of places. The basic idea is that a color
pixel consists of a value (V), which is its intensity, a saturation (S), which is the
amount of color, and the hue (H), which is the nature of the color.

As shown in Figure 2.19a, the value is height along a vertical axis, and
saturation is a distance along a radius of the color cone shown.

(b)(a)

Yellow

Green

Cyan
Blue

Magenta

Red

Hue

Figure 2.19: (a) The HSV color space is a cone, and the hue value is actually an angle. (b)
The result of applying the Sobel operator to the hue component of the pixels of Figure 2.17a.

58 Chapter 2 ■ Edge-Detection Techniques

The hue is actually an angle from 0 (red) to the color being specified. This
makes hue a pure color coordinate, and could be used to detect edges. Figure
2.19b is the simple color image of 2.17a converted into hue and then run
through the Sobel edge detector. The edges have been thresholded, partly
because the horizontal ones correspond to transitions between similar colors,
and so are weaker than the vertical edges.

2.8 Source Code for the Marr-Hildreth
Edge Detector

/* Marr/Hildreth edge detection */

#include “stdio.h“

#include “cv.h“

#include “highgui.h“

#include <math.h>

#include “lib.h“

float norm (float x, float y)

{

return (float) sqrt ((double)(x*x + y*y));

}

float distance (float a, float b, float c, float d)

{

return norm ((a-c), (b-d));

}

void marr (float s, IMAGE im)

{

int width;

float **smx;

int i,j,k,n;

float **lgau, z;

/* Create a Gaussian and a derivative of Gaussian filter mask */

width = 3.35*s + 0.33;

n = width+width + 1;

printf (“Smoothing with a Gaussian of size %dx%d\n“, n, n);

lgau = f2d (n, n);

for (i=0; i<n; i++)

for (j=0; j<n; j++)

lgau[i][j] = LoG (distance ((float)i, (float)j,

(float)width, (float)width), s);

Chapter 2 ■ Edge-Detection Techniques 59

/* Convolution of source image with a Gaussian in X and Y directions */

smx = f2d (im->info->nr, im->info->nc);

printf (“Convolution with LoG:\n“);

convolution (im, lgau, n, n, smx, im->info->nr, im->info->nc);

/* Locate the zero crossings */

printf (“Zero crossings:\n“);

zero_cross (smx, im);

/* Clear the boundary */

for (i=0; i<im->info->nr; i++)

{

for (j=0; j<=width; j++) im->data[i][j] = 0;

for (j=im->info->nc-width-1; j<im->info->nc; j++)

im->data[i][j] = 0;

}

for (j=0; j<im->info->nc; j++)

{

for (i=0; i<= width; i++) im->data[i][j] = 0;

for (i=im->info->nr-width-1; i<im->info->nr; i++)

im->data[i][j] = 0;

}

free(smx[0]); free(smx);

free(lgau[0]); free(lgau);

}

/* Gaussian */

float gauss(float x, float sigma)

{

return (float)exp((double) ((-x*x)/(2*sigma*sigma)));

}

float meanGauss (float x, float sigma)

{

float z;

z = (gauss(x,sigma)+gauss(x+0.5,sigma)+gauss(x-0.5,sigma))/3.0;

z = z/(PI*2.0*sigma*sigma);

return z;

}

float LoG (float x, float sigma)

{

float x1;

x1 = gauss (x, sigma);

return (x*x-2*sigma*sigma)/(sigma*sigma*sigma*sigma) * x1;

}

60 Chapter 2 ■ Edge-Detection Techniques

void convolution (IMAGE im, float **mask, int nr, int nc, float **res,

int NR, int NC)

{

int i,j,ii,jj, n, m, k, kk;

float x, y;

k = nr/2; kk = nc/2;

for (i=0; i<NR; i++)

for (j=0; j<NC; j++)

{

x = 0.0;

for (ii=0; ii<nr; ii++)

{

n = i - k + ii;

if (n<0 || n>=NR) continue;

for (jj=0; jj<nc; jj++)

{

m = j - kk + jj;

if (m<0 || m>=NC) continue;

x += mask[ii][jj] * (float)(im->data[n][m]);

}

}

res[i][j] = x;

}

}

void zero_cross (float **lapim, IMAGE im)

{

int i,j,k,n,m, dx, dy;

float x, y, z;

int xi,xj,yi,yj, count = 0;

IMAGE deriv;

for (i=1; i<im->info->nr-1; i++)

for (j=1; j<im->info->nc-1; j++)

{

im->data[i][j] = 0;

if(lapim[i-1][j]*lapim[i+1][j]<0){im->data[i][j]=255; continue;}

if(lapim[i][j-1]*lapim[i][j+1]<0){im->data[i][j]=255; continue;}

if(lapim[i+1][j-1]*lapim[i-1][j+1]<0){im->data[i][j]=255; continue;}

if(lapim[i-1][j-1]*lapim[i+1][j+1]<0){im->data[i][j]=255; continue;}

}

}

/* An alternative way to compute a Laplacian */

void dolap (float **x, int nr, int nc, float **y)

{

Chapter 2 ■ Edge-Detection Techniques 61

int i,j,k,n,m;

float u,v;

for (i=1; i<nr-1; i++)

for (j=1; j<nc-1; j++)

{

y[i][j] = (x[i][j+1]+x[i][j-1]+x[i-1][j]+x[i+1][j]) - 4*x[i][j];

if (u>y[i][j]) u = y[i][j];

if (v<y[i][j]) v = y[i][j];

}

}

int main ()

{

int i,j,n;

float s=1.0;

FILE *params;

IMAGE im1, im2;

char name[128];

// Try to read an image

printf (“Enter path to the image file to be processed: “);

scanf (“%s“, name);

printf (“Opening file '%s’\n“, name);

im1 = get_image(name);

printf (“Enter standard deviation: “);

scanf (“%f“, &s);

display_image (im1);

/* Look for parameter file */

im2 = newimage (im1->info->nr, im1->info->nc);

for (i=0; i<im1->info->nr; i++)

for (j=0; j<im1->info->nc; j++)

im2->data[i][j] = im1->data[i][j];

/* Apply the filter */

marr (s-0.8, im1);

marr (s+0.8, im2);

for (i=0; i<im1->info->nr; i++)

for (j=0; j<im1->info->nc; j++)

if (im1->data[i][j] > 0 && im2->data[i][j] > 0)

im1->data[i][j] = 0;

else im1->data[i][j] = 255;

display_image (im1);

save_image (im1, “marr.jpg“);

return 0;

}

62 Chapter 2 ■ Edge-Detection Techniques

2.9 Source Code for the Canny Edge Detector

/* Canny edge detection */

#include “stdio.h“

#include “cv.h“

#include “highgui.h“

/* Scale floating point magnitudes and angles to 8 bits */

#define ORI_SCALE 40.0

#define MAG_SCALE 20.0

#define PI 3.1415926535

/* Biggest possible filter mask */

#define MAX_MASK_SIZE 20

/* Fraction of pixels that should be above the HIGH threshold */

float ratio = 0.1f;

int WIDTH = 0;

int range (IMAGE x, int i, int j)

{

if ((i>=0) && (i<x->info->nr) && (j>=0) && (j<x->info->nc))

return 1;

else return 0;

}

float norm (float x, float y)

{

return (float) sqrt ((double)(x*x + y*y));

}

void canny (float s, IMAGE im, IMAGE mag, IMAGE ori)

{

int width;

float **smx,**smy;

float **dx,**dy;

int i,j,n;

float gau[MAX_MASK_SIZE], dgau[MAX_MASK_SIZE], z;

/* Create a Gaussian and a derivative of Gaussian filter mask */

for(i=0; i<MAX_MASK_SIZE; i++)

{

gau[i] = meanGauss ((float)i, s);

if (gau[i] < 0.005)

{

width = i;

break;

}

Chapter 2 ■ Edge-Detection Techniques 63

dgau[i] = dGauss ((float)i, s);

}

n = width+width + 1;

WIDTH = width/2;

printf (“Smoothing with a Gaussian (width = %d) ...\n“, n);

smx = f2d (im->info->nr, im->info->nc);

smy = f2d (im->info->nr, im->info->nc);

/* Convolution of source image with a Gaussian in X and Y directions */

seperable_convolution (im, gau, width, smx, smy);

/* Now convolve smoothed data with a derivative */

printf (“Convolution with the derivative of a Gaussian...\n“);

dx = f2d (im->info->nr, im->info->nc);

dxy_seperable_convolution (smx, im->info->nr, im->info->nc,

dgau, width, dx, 1);

free(smx[0]); free(smx);

dy = f2d (im->info->nr, im->info->nc);

dxy_seperable_convolution (smy, im->info->nr, im->info->nc,

dgau, width, dy, 0);

free(smy[0]); free(smy);

/* Create an image of the norm of dx,dy */

for (i=0; i<im->info->nr; i++)

for (j=0; j<im->info->nc; j++)

{

z = norm (dx[i][j], dy[i][j]);

mag->data[i][j] = (unsigned char)(z*MAG_SCALE);

}

/* Non-maximum suppression - edge pixels should be a local max */

nonmax_suppress (dx, dy, (int)im->info->nr,(int)im->info->nc, mag, ori);

free(dx[0]); free(dx);

free(dy[0]); free(dy);

}

/* Gaussian */

float gauss(float x, float sigma)

{

float xx;

if (sigma == 0) return 0.0;

xx = (float)exp((double) ((-x*x)/(2*sigma*sigma)));

return xx;

64 Chapter 2 ■ Edge-Detection Techniques

}

float meanGauss (float x, float sigma)

{

float z;

z = (gauss(x,sigma)+gauss(x+0.5f,sigma)+gauss(x-0.5f,sigma))/3.0f;

z = z/(PI*2.0f*sigma*sigma);

return z;

}

/* First derivative of Gaussian */

float dGauss (float x, float sigma)

{

return -x/(sigma*sigma) * gauss(x, sigma);

}

/* HYSTERESIS thersholding of edge pixels. Starting at pixels with a

value greater than the HIGH threshold, trace a connected sequence

of pixels that have a value greater than the LOW threhsold. */

void hysteresis (int high, int low, IMAGE im, IMAGE mag, IMAGE oriim)

{

int i,j;

printf (“Beginning hysteresis thresholding...\n“);

for (i=0; i<im->info->nr; i++)

for (j=0; j<im->info->nc; j++)

im->data[i][j] = 0;

if (high<low)

{

estimate_thresh (mag, &high, &low);

printf (“Hysteresis thresholds (from image): HI %d LOW %D\n“,

high, low);

}

/* For each edge with a magnitude above the high threshold, begin

tracing edge pixels that are above the low threshold. */

for (i=0; i<im->info->nr; i++)

for (j=0; j<im->info->nc; j++)

if (mag->data[i][j] >= high)

trace (i, j, low, im, mag, oriim);

/* Make the edge black (to be the same as the other methods) */

for (i=0; i<im->info->nr; i++)

for (j=0; j<im->info->nc; j++)

if (im->data[i][j] == 0) im->data[i][j] = 255;

else im->data[i][j] = 0;

}

Chapter 2 ■ Edge-Detection Techniques 65

/* TRACE - recursively trace edge pixels that have a

threshold > the low edge threshold, continuing

from the pixel at (i,j). */

int trace (int i, int j, int low, IMAGE im,IMAGE mag, IMAGE ori)

{

int n,m;

char flag = 0;

if (im->data[i][j] == 0)

{

im->data[i][j] = 255;

flag=0;

for (n= -1; n<=1; n++)

{

for(m= -1; m<=1; m++)

{

if (i==0 && m==0) continue;

if (range(mag, i+n, j+m) && mag->data[i+n][j+m] >= low)

if (trace(i+n, j+m, low, im, mag, ori))

{

flag=1;

break;

}

}

if (flag) break;

}

return(1);

}

return(0);

}

void seperable_convolution (IMAGE im, float *gau, int width,

float **smx, float **smy)

{

int i,j,k, I1, I2, nr, nc;

float x, y;

nr = im->info->nr;

nc = im->info->nc;

for (i=0; i<nr; i++)

for (j=0; j<nc; j++)

{

x = gau[0] * im->data[i][j]; y = gau[0] * im->data[i][j];

for (k=1; k<width; k++)

{

I1 = (i+k)%nr; I2 = (i-k+nr)%nr;

y += gau[k]*im->data[I1][j] + gau[k]*im->data[I2][j];

I1 = (j+k)%nc; I2 = (j-k+nc)%nc;

66 Chapter 2 ■ Edge-Detection Techniques

x += gau[k]*im->data[i][I1] + gau[k]*im->data[i][I2];

}

smx[i][j] = x; smy[i][j] = y;

}

}

void dxy_seperable_convolution (float** im, int nr, int nc, float *gau,

int width, float **sm, int which)

{

int i,j,k, I1, I2;

float x;

for (i=0; i<nr; i++)

for (j=0; j<nc; j++)

{

x = 0.0;

for (k=1; k<width; k++)

{

if (which == 0)

{

I1 = (i+k)%nr; I2 = (i-k+nr)%nr;

x += -gau[k]*im[I1][j] + gau[k]*im[I2][j];

}

else

{

I1 = (j+k)%nc; I2 = (j-k+nc)%nc;

x += -gau[k]*im[i][I1] + gau[k]*im[i][I2];

}

}

sm[i][j] = x;

}

}

void nonmax_suppress (float **dx, float **dy, int nr, int nc,

IMAGE mag, IMAGE ori)

{

int i,j;

float xx, yy, g2, g1, g3, g4, g, xc, yc;

for (i=1; i<mag->info->nr-1; i++)

{

for (j=1; j<mag->info->nc-1; j++)

{

mag->data[i][j] = 0;

/* Treat the x and y derivatives as components of a vector */

xc = dx[i][j];

yc = dy[i][j];

if (fabs(xc)<0.01 && fabs(yc)<0.01) continue;

g = norm (xc, yc);

Chapter 2 ■ Edge-Detection Techniques 67

/* Follow the gradient direction, as indicated by the direction of

the vector (xc, yc); retain pixels that are a local maximum. */

if (fabs(yc) > fabs(xc))

{

/* The Y component is biggest, so gradient direction is

basically UP/DOWN */

xx = fabs(xc)/fabs(yc);

yy = 1.0;

g2 = norm (dx[i-1][j], dy[i-1][j]);

g4 = norm (dx[i+1][j], dy[i+1][j]);

if (xc*yc > 0.0)

{

g3 = norm (dx[i+1][j+1], dy[i+1][j+1]);

g1 = norm (dx[i-1][j-1], dy[i-1][j-1]);

} else

{

g3 = norm (dx[i+1][j-1], dy[i+1][j-1]);

g1 = norm (dx[i-1][j+1], dy[i-1][j+1]);

}

} else

{

/* The X component is biggest, so gradient direction is

basically LEFT/RIGHT */

xx = fabs(yc)/fabs(xc);

yy = 1.0;

g2 = norm (dx[i][j+1], dy[i][j+1]);

g4 = norm (dx[i][j-1], dy[i][j-1]);

if (xc*yc > 0.0)

{

g3 = norm (dx[i-1][j-1], dy[i-1][j-1]);

g1 = norm (dx[i+1][j+1], dy[i+1][j+1]);

}

else

{

g1 = norm (dx[i-1][j+1], dy[i-1][j+1]);

g3 = norm (dx[i+1][j-1], dy[i+1][j-1]);

}

}

/* Compute the interpolated value of the gradient magnitude */

if ((g > (xx*g1 + (yy-xx)*g2)) &&

(g > (xx*g3 + (yy-xx)*g4)))

68 Chapter 2 ■ Edge-Detection Techniques

{

if (g*MAG_SCALE <= 255)

mag->data[i][j] = (unsigned char)(g*MAG_SCALE);

else

mag->data[i][j] = 255;

ori->data[i][j] = (unsigned char) (atan2 (yc, xc) * ORI_SCALE);

} else

{

mag->data[i][j] = 0;

ori->data[i][j] = 0;

}

}

}

}

void estimate_thresh (IMAGE mag, int *hi, int *low)

{

int i,j,k, hist[256], count;

/* Build a histogram of the magnitude image. */

for (k=0; k<256; k++) hist[k] = 0;

for (i=WIDTH; i<mag->info->nr-WIDTH; i++)

for (j=WIDTH; j<mag->info->nc-WIDTH; j++)

hist[mag->data[i][j]]++;

/* The high threshold should be > 80 or 90% of the pixels

j = (int)(ratio*mag->info->nr*mag->info->nc);

*/

j = mag->info->nr;

if (j<mag->info->nc) j = mag->info->nc;

j = (int)(0.9*j);

k = 255;

count = hist[255];

while (count < j)

{

k--;

if (k<0) break;

count += hist[k];

}

*hi = k;

i=0;

while (hist[i]==0) i++;

*low = (*hi+i)/2.0f;

}

Chapter 2 ■ Edge-Detection Techniques 69

int main ()

{

int i,j;

float s=1.0;

int low= 0,high=-1;

FILE *params;

IMAGE im, magim, oriim;

char name[128];

// Try to read an image

printf (“Enter path to the image file to be processed: “);

scanf (“%s“, name);

printf (“Opening file '%s’\n“, name);

/* Read parameters from the file canny.par */

params = fopen (“canny.par“, “r“);

if (params)

{

fscanf (params, “%d“, &low); /* Lower threshold */

fscanf (params, “%d“, &high); /* High threshold */

fscanf (params, “%f“, &s); /* Gaussian standard deviation */

printf (“Parameters from canny.par: HIGH: %d LOW %d Sigma %f\n“,

high, low, s);

fclose (params);

}

else printf (“Parameter file 'canny.par' does not exist.\n“);

im = get_image(name);

display_image (im);

/* Create local image space */

magim = newimage (im->info->nr, im->info->nc);

if (magim == NULL)

{

printf (“Out of storage: Magnitude\n“);

exit (1);

}

oriim = newimage (im->info->nr, im->info->nc);

if (oriim == NULL)

{

printf (“Out of storage: Orientation\n“);

exit (1);

}

/* Apply the filter */

canny (s, im, magim, oriim);

/* Hysteresis thresholding of edge pixels */

hysteresis (high, low, im, magim, oriim);

70 Chapter 2 ■ Edge-Detection Techniques

for (i=0; i<WIDTH; i++)

for (j=0; j<im->info->nc; j++)

im->data[i][j] = 255;

for (i=im->info->nr-1; i>im->info->nr-1-WIDTH; i--)

for (j=0; j<im->info->nc; j++)

im->data[i][j] = 255;

for (i=0; i<im->info->nr; i++)

for (j=0; j<WIDTH; j++)

im->data[i][j] = 255;

for (i=0; i<im->info->nr; i++)

for (j=im->info->nc-WIDTH-1; j<im->info->nc; j++)

im->data[i][j] = 255;

display_image (im);

save_image (im, “canny.jpg“);

return 0;

}

2.10 Source Code for the Shen-Castan
Edge Detector

/* ISEF edge detector */

#include “stdio.h“

#include “cv.h“

#include “highgui.h“

#include <stdio.h>

#include <string.h>

#include <math.h>

#define OUTLINE 25

/* globals for shen operator */

double b = 0.9; /* smoothing factor 0 < b < 1 */

double low_thresh=20, high_thresh=22; /* threshold for hysteresis */

double ratio = 0.99;

int window_size = 7;

int do_hysteresis = 1;

float **lap; /* keep track of laplacian of image */

int nr, nc; /* nrows, ncols */

IMAGE edges; /* keep track of edge points (thresholded)

Chapter 2 ■ Edge-Detection Techniques 71

*/

int thinFactor;

void shen (IMAGE im, IMAGE res)

{

register int i,j;

float **buffer;

float **smoothed_buffer;

IMAGE bli_buffer;

/* Convert the input image to floating point */

buffer = f2d (im->info->nr, im->info->nc);

for (i=0; i<im->info->nr; i++)

for (j=0; j<im->info->nc; j++)

buffer[i][j] = (float)(im->data[i][j]);

/* Smooth input image using recursively implemented ISEF filter */

smoothed_buffer = f2d(im->info->nr, im->info->nc);

compute_ISEF (buffer, smoothed_buffer, im->info->nr, im->info->nc);

/* Compute bli image band-limited laplacian image from smoothed image */

bli_buffer = compute_bli(smoothed_buffer,

buffer,im->info->nr,im->info->nc);

/* Perform edge detection using bli and gradient thresholding */

locate_zero_crossings (buffer, smoothed_buffer, bli_buffer,

im->info->nr, im->info->nc);

free(smoothed_buffer[0]); free(smoothed_buffer);

freeimage (bli_buffer);

threshold_edges (buffer, res, im->info->nr, im->info->nc);

for (i=0; i<im->info->nr; i++)

for (j=0; j<im->info->nc; j++)

if (res->data[i][j] > 0) res->data[i][j] = 0;

else res->data[i][j] = 255;

free(buffer[0]); free(buffer);

}

/* Recursive filter realization of the ISEF

(Shen and Castan CVIGP March 1992) */

void compute_ISEF (float **x, float **y, int nrows, int ncols)

{

float **A, **B;

A = f2d(nrows, ncols); /* store causal component */

B = f2d(nrows, ncols); /* store anti-causal component */

/* first apply the filter in the vertical direcion (to the rows) */

apply_ISEF_vertical (x, y, A, B, nrows, ncols);

72 Chapter 2 ■ Edge-Detection Techniques

/* now apply the filter in the horizontal direction (to the columns) and */

/* apply this filter to the results of the previous one */

apply_ISEF_horizontal (y, y, A, B, nrows, ncols);

/* free up the memory */

free (B[0]); free(B);

free (A[0]); free(A);

}

void apply_ISEF_vertical (float **x, float **y, float **A, float **B,

int nrows, int ncols)

{

register int row, col;

float b1, b2;

b1 = (1.0 - b)/(1.0 + b);

b2 = b*b1;

/* compute boundary conditions */

for (col=0; col<ncols; col++)

{

/* boundary exists for 1st and last column */

A[0][col] = b1 * x[0][col];

B[nrows-1][col] = b2 * x[nrows-1][col];

}

/* compute causal component */

for (row=1; row<nrows; row++)

for (col=0; col<ncols; col++)

A[row][col] = b1 * x[row][col] + b * A[row-1][col];

/* compute anti-causal component */

for (row=nrows-2; row>=0; row--)

for (col=0; col<ncols; col++)

B[row][col] = b2 * x[row][col] + b * B[row+1][col];

/* boundary case for computing output of first filter */

for (col=0; col<ncols-1; col++)

y[nrows-1][col] = A[nrows-1][col];

/* now compute the output of the first filter and store in y */

/* this is the sum of the causal and anti-causal components */

for (row=0; row<nrows-2; row++)

for (col=0; col<ncols-1; col++)

y[row][col] = A[row][col] + B[row+1][col];

}

void apply_ISEF_horizontal (float **x, float **y, float **A, float **B,

int nrows, int ncols)

Chapter 2 ■ Edge-Detection Techniques 73

{

register int row, col;

float b1, b2;

b1 = (1.0 - b)/(1.0 + b);

b2 = b*b1;

/* compute boundary conditions */

for (row=0; row<nrows; row++)

{

A[row][0] = b1 * x[row][0];

B[row][ncols-1] = b2 * x[row][ncols-1];

}

/* compute causal component */

for (col=1; col<ncols; col++)

for (row=0; row<nrows; row++)

A[row][col] = b1 * x[row][col] + b * A[row][col-1];

/* compute anti-causal component */

for (col=ncols-2; col>=0; col--)

for (row=0; row<nrows;row++)

B[row][col] = b2 * x[row][col] + b * B[row][col+1];

/* boundary case for computing output of first filter */

for (row=0; row<nrows; row++)

y[row][ncols-1] = A[row][ncols-1];

/* now compute the output of the second filter and store in y */

/* this is the sum of the causal and anti-causal components */

for (row=0; row<nrows; row++)

for (col=0; col<ncols-1; col++)

y[row][col] = A[row][col] + B[row][col+1];

}

/* compute the band-limited laplacian of the input image */

IMAGE compute_bli (float **buff1, float **buff2, int nrows, int ncols)

{

register int row, col;

IMAGE bli_buffer;

bli_buffer = newimage(nrows, ncols);

for (row=0; row<nrows; row++)

for (col=0; col<ncols; col++)

bli_buffer->data[row][col] = 0;

/* The bli is computed by taking the difference between the smoothed image */

/* and the original image. In Shen and Castan’s paper this is shown to */

74 Chapter 2 ■ Edge-Detection Techniques

/* approximate the band-limited laplacian of the image. The bli is then */

/* made by setting all values in the bli to 1 where the laplacian is */

/* positive and 0 otherwise. */

for (row=0; row<nrows; row++)

for (col=0; col<ncols; col++)

{

if (row<OUTLINE || row >= nrows-OUTLINE ||

col<OUTLINE || col >= ncols-OUTLINE) continue;

bli_buffer->data[row][col] =

((buff1[row][col] - buff2[row][col]) > 0.0);

}

return bli_buffer;

}

void locate_zero_crossings (float **orig, float **smoothed, IMAGE bli,

int nrows, int ncols)

{

register int row, col;

for (row=0; row<nrows; row++)

{

for (col=0; col<ncols; col++)

{

/* ignore pixels around the boundary of the image */

if (row<OUTLINE || row >= nrows-OUTLINE ||

col<OUTLINE || col >= ncols-OUTLINE)

{

orig[row][col] = 0.0;

}

/* next check if pixel is a zero-crossing of the laplacian */

else if (is_candidate_edge (bli, smoothed, row, col))

{

/* now do gradient thresholding */

float grad = compute_adaptive_gradient (bli,

smoothed, row, col);

orig[row][col] = grad;

}

else orig[row][col] = 0.0;

}

}

}

void threshold_edges (float **in, IMAGE out, int nrows, int ncols)

{

register int i, j;

lap = in;

edges = out;

Chapter 2 ■ Edge-Detection Techniques 75

nr = nrows;

nc = ncols;

estimate_thresh (&low_thresh, &high_thresh, nr, nc);

if (!do_hysteresis)

low_thresh = high_thresh;

for (i=0; i<nrows; i++)

for (j=0; j<ncols; j++)

edges->data[i][j] = 0;

for (i=0; i<nrows; i++)

for (j=0; j<ncols; j++)

{

if (i<OUTLINE || i >= nrows-OUTLINE ||

j<OUTLINE || j >= ncols-OUTLINE) continue;

/* only check a contour if it is above high_thresh */

if ((lap[i][j]) > high_thresh)

/* mark all connected points above low thresh */

mark_connected (i,j,0);

}

for (i=0; i<nrows; i++) /* erase all points which were 255 */

for (j=0; j<ncols; j++)

if (edges->data[i][j] == 255) edges->data[i][j] = 0;

}

/* return true if it marked something */

int mark_connected (int i, int j, int level)

{

int notChainEnd;

/* stop if you go off the edge of the image */

if (i >= nr || i < 0 || j >= nc || j < 0) return 0;

/* stop if the point has already been visited */

if (edges->data[i][j] != 0) return 0;

/* stop when you hit an image boundary */

if (lap[i][j] == 0.0) return 0;

if ((lap[i][j]) > low_thresh)

{

edges->data[i][j] = 1;

}

else

{

edges->data[i][j] = 255;

}

76 Chapter 2 ■ Edge-Detection Techniques

notChainEnd =0;

notChainEnd |= mark_connected(i ,j+1, level+1);

notChainEnd |= mark_connected(i ,j-1, level+1);

notChainEnd |= mark_connected(i+1,j+1, level+1);

notChainEnd |= mark_connected(i+1,j , level+1);

notChainEnd |= mark_connected(i+1,j-1, level+1);

notChainEnd |= mark_connected(i-1,j-1, level+1);

notChainEnd |= mark_connected(i-1,j , level+1);

notChainEnd |= mark_connected(i-1,j+1, level+1);

if (notChainEnd && (level > 0))

{

/* do some contour thinning */

if (thinFactor > 0)

if ((level%thinFactor) != 0)

{

/* delete this point */

edges->data[i][j] = 255;

}

}

return 1;

}

/* finds zero-crossings in laplacian (buff) orig is the smoothed image */

int is_candidate_edge (IMAGE buff, float **orig, int row, int col)

{

/* test for zero-crossings of laplacian then make sure that zero-crossing */

/* sign correspondence principle is satisfied. i.e. a positive z-c must */

/* have a positive 1st derivative where positive z-c means the 2nd deriv */

/* goes from positive to negative as we pass through the step edge */

if (buff->data[row][col] == 1 && buff->data[row+1][col] == 0)

/* positive z-c */

{

if (orig[row+1][col] - orig[row-1][col] > 0) return 1;

else return 0;

}

else if (buff->data[row][col] == 1 && buff->data[row][col+1] == 0)

/* positive z-c */

{

if (orig[row][col+1] - orig[row][col-1] > 0) return 1;

else return 0;

}

else if (buff->data[row][col] == 1 && buff->data[row-1][col] == 0)

/* negative z-c */

Chapter 2 ■ Edge-Detection Techniques 77

{

if (orig[row+1][col] - orig[row-1][col] < 0) return 1;

else return 0;

}

else if (buff->data[row][col] == 1 && buff->data[row][col-1] == 0)

/* negative z-c */

{

if (orig[row][col+1] - orig[row][col-1] < 0) return 1;

else return 0;

}

else /* not a z-c */

return 0;

}

float compute_adaptive_gradient (IMAGE BLI_buffer, float **orig_buffer,

int row, int col)

{

register int i, j;

float sum_on, sum_off;

float avg_on, avg_off;

int num_on, num_off;

sum_on = sum_off = 0.0;

num_on = num_off = 0;

for (i= (-window_size/2); i<=(window_size/2); i++)

{

for (j=(-window_size/2); j<=(window_size/2); j++)

{

if (BLI_buffer->data[row+i][col+j])

{

sum_on += orig_buffer[row+i][col+j];

num_on++;

}

else

{

sum_off += orig_buffer[row+i][col+j];

num_off++;

}

}

}

if (sum_off) avg_off = sum_off / num_off;

else avg_off = 0;

if (sum_on) avg_on = sum_on / num_on;

else avg_on = 0;

return (avg_off - avg_on);

}

78 Chapter 2 ■ Edge-Detection Techniques

void estimate_thresh (double *low, double *hi, int nr, int nc)

{

float vmax, vmin, scale, x;

int i,j,k, hist[256], count;

/* Build a histogram of the Laplacian image. */

vmin = vmax = fabs((float)(lap[20][20]));

for (i=0; i<nr; i++)

for (j=0; j<nc; j++)

{

if (i<OUTLINE || i >= nr-OUTLINE ||

j<OUTLINE || j >= nc-OUTLINE) continue;

x = lap[i][j];

if (vmin > x) vmin = x;

if (vmax < x) vmax = x;

}

for (k=0; k<256; k++) hist[k] = 0;

scale = 256.0/(vmax-vmin + 1);

for (i=0; i<nr; i++)

for (j=0; j<nc; j++)

{

if (i<OUTLINE || i >= nr-OUTLINE ||

j<OUTLINE || j >= nc-OUTLINE) continue;

x = lap[i][j];

k = (int)((x - vmin)*scale);

hist[k] += 1;

}

/* The high threshold should be > 80 or 90% of the pixels */

k = 255;

j = (int)(ratio*nr*nc);

count = hist[255];

while (count < j)

{

k--;

if (k<0) break;

count += hist[k];

}

*hi = (double)k/scale + vmin ;

*low = (*hi)/2;

}

void embed (IMAGE im, int width)

{

int i,j,I,J;

IMAGE new;

width += 2;

Chapter 2 ■ Edge-Detection Techniques 79

new = newimage (im->info->nr+width+width,im->info->nc+width+width);

for (i=0; i<new->info->nr; i++)

for (j=0; j<new->info->nc; j++)

{

I = (i-width+im->info->nr)%im->info->nr;

J = (j-width+im->info->nc)%im->info->nc;

new->data[i][j] = im->data[I][J];

}

free (im->info);

free(im->data[0]); free(im->data);

im->info = new->info;

im->data = new->data;

}

void debed (IMAGE im, int width)

{

int i,j;

IMAGE old;

width +=2;

old = newimage (im->info->nr-width-width,im->info->nc-width-width);

for (i=0; i<old->info->nr-1; i++)

{

for (j=1; j<old->info->nc; j++)

{

old->data[i][j] = im->data[i+width][j+width];

old->data[old->info->nr-1][j] = 255;

}

old->data[i][0] = 255;

}

free (im->info);

free(im->data[0]); free(im->data);

im->info = old->info;

im->data = old->data;

}

int main ()

{

IMAGE im, res;

FILE *params;

char name[128];

// Try to read an image

printf (“Enter path to the image file to be processed: “);

scanf (“%s“, name);

printf (“Opening file '%s’\n“, name);

80 Chapter 2 ■ Edge-Detection Techniques

im = get_image(name);

display_image (im);

/* Look for parameter file */

params = fopen (“shen.par“, “r“);

if (params)

{

fscanf (params, “%lf“, &ratio);

fscanf (params, “%lf“, &b);

if (b<0) b = 0;

else if (b>1.0) b = 1.0;

fscanf (params, “%d“, &window_size);

fscanf (params, “%d“, &thinFactor);

fscanf (params, “%d“, &do_hysteresis);

printf (“Parameters:\n“);

printf (“ %% of pixels to be above HIGH threshold: %7.3f\n“, ratio);

printf (“ Size of window for adaptive gradient: %3d\n“,

window_size);

printf (“ Thinning factor : %d\n“, thinFactor);

printf (“Smoothing factor : %7.4f\n“, b);

if (do_hysteresis) printf (“Hysteresis thresholding turned on.\n“);

else printf (“Hysteresis thresholding turned off.\n“);

fclose (params);

}

else printf (“Parameter file 'shen.par' does not exist.\n“);

embed (im, OUTLINE);

res = newimage (im->info->nr, im->info->nc);

shen (im, res);

debed (res, OUTLINE);

display_image (res);

save_image (res, “shen.jpg“);

return 0;

}

2.11 Website Files

canny.c Canny edge detector

colorEdge1.c Color edge detector

Chapter 2 ■ Edge-Detection Techniques 81

colorEdge2.c Color edge detector

colorEdge3.c Color edge detector

eval1.c Pratt edge evaluation

eval2.c Rosenfeld edge evaluation

gnoise.c Adds Gaussian noise to an image

grad1.c Simple gradient edge detector

grad2.c Simple gradient edge detector

kirsch.c Kirsch edge detector

lib.c Basic code library

lib.h Library include file

maketmpl.c Builds edge evaluation images

marr.c Marr-Hildreth edge detector

measure.c Measure noise in an image

shen.c ISEF edge detector

sobel.c Sobel edge detector

canny.par Parameter file for Canny edge detector

shen.par Parameter file for ISEF edge detector

chess.jpg Test image, chessboard; JPEG version

chess.pgm Test image, chessboard; PGM version

chess_18.pgm Chess image, with noise mean = 18

chess_3.pgm Chess image, with noise mean = 3

chess_9.pgm Chess image, with noise mean = 9

et1.pgm Edge test image, vertical boundary

et1_18.pgm ET1 with noise mean = 18

et1_3.pgm ET1 with noise mean = 3

et1_9.pgm ET1 with noise mean = 9

et2.pgm Edge test image, horizontal boundary

et2_18.pgm ET2 with noise mean = 18

et2_3.pgm ET2 with noise mean = 3

82 Chapter 2 ■ Edge-Detection Techniques

et2_9.pgm ET2 with noise mean = 9

et3.pgm Edge test image, upper-left to lower-right boundary

et3_18.pgm ET3 with noise mean = 18

et3_3.pgm ET3 with noise mean = 3

et3_9.pgm ET4 with noise mean = 9

et4.pgm Edge test image, EF1.line at boundary

et4_18.pgm ET4 with noise mean = 18

et4_3.pgm ET4 with noise mean = 3

et4_9.pgm ET4 with noise mean = 9

et5.pgm Edge test image, ET1 2-pixel line at boundary

et5_18.pgm ET5 with noise mean = 18

et5_3.pgm ET5 with noise mean = 3

et5_9.pgm ET5 with noise mean = 9

n20b.pgm Noise in a black region

n20w.pgm Noise in a white region

wood.pgm Teak wood grain image (2.2a)

et1.edg Ground truth for ET1.PGM

et2.edg Ground truth for ET2.PGM

et3.edg Ground truth for ET3.PGM

et4.edg Ground truth for ET4.PGM

et5.edg Ground truth for ET5.PGM

2.12 References

Abdou, I. E. and Pratt, W. K. ‘‘Quantitative Design and Evaluation of Enhance-
ment/Thresholding Edge Detectors.’’ Proceedings of the IEEE 67 (1979):
753–763.

Baker, S. and Nayar, S. K. ‘‘Global Measures of Coherence for Edge Detector
Evaluation.’’ Proceedings of CVPR99 (2002): 373–379.

Basu, M. ‘‘Gaussian-Based Edge-Detection Methods: A Survey.’’ SMC-C 32
(August 2002): 252–260.

Chapter 2 ■ Edge-Detection Techniques 83

Bruni, C., de Santis, A., Iacoviello, D. and G. Koch. ‘‘Modeling for Edge Detec-
tion Problems in Blurred Noisy Images.’’ IP 10 (October 2001): 1447–1453.

Canny, J. ‘‘A Computational Approach to Edge Detection.’’ IEEE Transactions
on Pattern Analysis and Machine Intelligence PAMI-8 6 (November 1986):
679–698.

Cumani, A. ‘‘Edge Detection in Multispectral Images.’’ GMIP 53, no. 1 (1991):
40–51.

Cumani, A., Grattoni, P. and A. Guiducci. ‘‘An Edge-Based Description of
Color Images.’’ GMIP 53, no. 4 (1991): 313–323.

Deutsch, E. S. and Fram, J. R. ‘‘A Quantitative Study of Orientation Bias of
Some Edge Detector Schemes.’’ IEEE Transactions on Computers C-27, no. 3
(March 1978): 205–213.

Dutta, Soumya and Bidyut B. Chaudhuri. ‘‘A Color Edge Detection Algorithm
in RGB Color Space, Advances in Recent Technologies in Communication
and Computing.’’ International Conference on Advances in Recent Technologies
in Communication and Computing (2009): 337–340.

Evans, A. N. and X. U. Liu. ‘‘A Morphological Gradient Approach to Color
Edge Detection.’’ IP 15, no. 6 (June 2006): 1454–1463.

Fan, J. P., Aref, W. G., Hacid, M. S. and A. K. Elmagarmid. ‘‘An Improved
Automatic Isotropic Color Edge Detection Technique.’’ PRL 22, no. 13
(November 2001): 1419–1429.

Grimson, W. E. L. From Images to Surfaces. Cambridge: MIT Press, 1981.
Huntsberger, T. L. and M. F. Descalzi. ‘‘Color Edge Detection.’’ PRL 3 (1985):

205–209.
Kaplan, W. Advanced Calculus, 2nd ed. Reading: Addison Wesley, 1973.
Kirsch, R. A. ‘‘Computer Determination of the Constituent Structure of Bio-

logical Images.’’ Computers and Biomedical Research 4 (1971): 315–328.
Kitchen, L. and Rosenfeld, A. ‘‘Edge Evaluation Using Local Edge Coherence.’’

IEEE Transactions on Systems, Man, and Cybernetics SMC-11 9 (September
1981): 597–605.

Liu, G. and R. M. Haralick. ‘‘Assignment Problem in Edge Detection Perfor-
mance Evaluation.’’ Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 1 (June 2000): 26–31.

Mendonça, P. R. S., Padfield, D., Miller, J. and M. Turek, ‘‘Bias in the Localiza-
tion of Curved Edges.’’ ECCV, 2 (May 2004): 554–565.

Marr, D. and Hildreth, E. ‘‘Theory of Edge Detection.’’ Proceedings of the Royal
Society of London Series B 207 (1980): 187–217.

Medina-Carnicer, R., Carmona-Poyato, Á., Muñoz-Salinas, R. and Madrid-
Cuevas. ‘‘Determining Hysteresis Thresholds for Edge Detection by Com-
bining the Advantages and Disadvantages of Thresholding Methods.’’ IP
19, no. 1 (January 2010): 165–173.

Naik, S. K. and C. A. Murthy. ‘‘Standardization of Edge Magnitude in Color
Images.’’ IP 15, no. 9 (August 2006): 2588–2595.

84 Chapter 2 ■ Edge-Detection Techniques

Nalwa, V. S. and Binford, T. O. ‘‘On Detecting Edges.’’ IEEE Transactions
on Pattern Analysis and Machine Intelligence PAMI-8 6 (November 1986):
699–714.

Nevatia, R. ‘‘A Color Edge Detector and Its Use in Scene Segmentation.’’ SMC
7, no. 11 (November 1977): 820–826.

Peli, E. ‘‘Feature Detection Algorithm Based on a Visual System Model.’’ PIEEE
90, no. 1 (January 2002): 78–93.

Prager, J. M. ‘‘Extracting and Labeling Boundary Segments in Natural Scenes.’’
IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-2 1
(January 1980): 16–27.

Pratt, W.K. Digital Image Processing. New York: John Wiley & Sons, 1978.
Saber, E., Tekalp, A.M. and G. Bozdagi. ‘‘Fusion of Color and Edge Information

for Improved Segmentation and Edge Linking.’’ IVC 15, no. 10 (October
1997): 769–780.

Scharcanski, J. and A.N. Venetsanopoulos. ‘‘Edge-Detection of Color Images
Using Directional Operators.’’ CirSysVideo 7, no. 2 (April 1997): 397–401.

Shah, M., Sood, A. and R. Jain. ‘‘Pulse and Staircase Edge Models.’’ Computer
Vision, Graphics, and Image Processing 34 (1986): 321–343.

Shen, J. and S. Castan. ‘‘An Optimal Linear Operator for Step Edge Detec-
tion.’’ Computer Vision, Graphics, and Image Processing: Graphical Models and
Understanding 54, no. 2 (March 1992): 112–133.

Song, J. Q. A., Cai, M. and M. R. Lyu. ‘‘Edge Color Distribution Transform: An
Efficient Tool for Object Detection in Images.’’ ICPR02 I, (2002): 608–611.

Theoharatos, C., Economou, G. and S. Fotopoulos. ‘‘Color Edge Detection
Using the Minimal Spanning Tree.’’ PR 38, no. 4 (April 2005): 603–606.

Toivanen, P. J., Ansamäki, J., Parkkinen, J. P. S. and J. Mielikäinen. ‘‘Edge
Detection in Multispectral Images Using the Self-Organizing Map.’’ PRL 24,
no. 16 (December 2003): 2987–2994.

Torre, V. and T. A. Poggio. ‘‘On Edge Detection.’’ IEEE Transactions on Pattern
Analysis and Machine Intelligence PAMI-8 2 (March 1986): 147–163.

Trahanias, P.E. and A.N. Venetsanopoulos. ‘‘Color Edge Detection Using
Vector Order Statistics.’’ IP 2, no. 2 (April 1993): 259–264.

Tremblais, Benoit and Bertrand Augereau. ‘‘A Fast Multi-Scale Edge Detection
Algorithm.’’ Pattern Recognition Letters 25, no. 6 (April 2004): 603–618

Tsai, P., Chang, C. C. and Y.C. Hu. ‘‘An Adaptive Two-Stage Edge Detection
Scheme for Digital Color Images.’’ RealTimeImg 8, no. 4 (August 2002):
329–343.

Yang, C. K., W. H. Tsai. ‘‘Reduction of Color Space Dimensionality by
Moment-Preserving Thresholding and Its Application for Edge-Detection in
Color Images.’’ PRL 17, no. 5 (May 1, 1996): 481–490.

C H A P T E R

3

Digital Morphology

3.1 Morphology Defined

‘‘Morphology’’ means the form and structure of an object, or the arrangements
and interrelationships between the parts of an object. Morphology is related
to shape, and digital morphology is a way to describe or analyze the shape of
a digital, most often raster, object.

The oldest uses of the word relate to language and to biology. In linguistics
morphology is the study of the structure of words, and this has been an area of
study for a great many years. In biology, morphology relates more directly to
the shape of an organism — the shape of a leaf can be used to identify a plant,
and the shape of a colony of bacteria can be used to identify its variety. In
each case there is an intricate scheme for classification, based on overall shape
(elliptical, circular, etc.), type and degree of irregularities (convex, rough or
smooth outline, etc.), internal structures (holes, linear or curved features) that
has been accumulated over many years of observation. In all cases, shape is a
key concept.

The science of digital or mathematical morphology is relatively new, since
it is only recently that digital computers have made it practical. On the other
hand, the mathematics behind it is simply set theory, which is a well-studied
area. The idea underlying digital morphology is that images consist of a set
of picture elements (pixels) that collect into groups having a two-dimensional
structure (shape). Certain mathematical operations on the set of pixels can
be used to enhance specific aspects of the shapes so that they might be, for
example, counted or recognized. Basic operations are erosion, in which pixels

85

86 Chapter 3 ■ Digital Morphology

matching a given pattern are deleted from the image, and dilation, in which a
small area about a pixel is set to a given pattern. However, depending on the
type of image being processed (bi-level, grey-level, or color), the definition of
these operations changes, so each must be considered separately.

3.2 Connectedness

Underlying most of digital morphology are the concepts of connectedness and
connected regions among sets of pixels. These are defined on bi-level images,
which is the usual domain of morphology. On a standard raster grid, each
pixel has a set of neighbors, or pixels that are thought to be ‘‘touching’’ it or
‘‘next to’’ it. Given that the coordinates of a pixel P are (i, j), the candidates for
its neighbors are:

(i − 1, j − 1) (i − 1, j) (i − 1, j + 1)
(i, j − 1) (i, j) (i, j + 1)
(i + 1, j − 1) (i + 1, j) (i + 1, j + 1)

The pixels that are different from (i, j) by one in either index would appear
to certainly be neighbors. They are the nearest pixels, being a distance of one
unit from P either horizontally or vertically. There are four of these, and so
they can be called 4-neighbors. The pixels diagonally next to P, those that differ
by one in both coordinates, can also be considered to be neighbors. Treating a
raster grid as a chessboard, these pixels are also one unit (square) away from
P, and there seems to be a natural neighbor relation between them. There are
eight of these pixels, and so they are called 8-neighbors of P.

A 4-connected region (or 4-region) is a set of pixels that are 4-connected to
each other. It consists of all pixels that are 4-connected, not just a subset, and
any pixel in that region is 4-connected to all the rest. Similarly, an 8-connected
region (or 8-region) is a set of pixels in which all pixels are 8-connected to each
other. Such regions within an image tend to represent objects that have been
scanned by a camera and processed into bi-level areas for processing — for
example, text on a page. Thus, it is important to find these, count them, smooth
them, and otherwise process them.

Figure 3.1 shows the difference between 4-connected and 8-connected
regions. Note that in some of these examples changing a single pixel from
black to white changes the number of regions in the image. This illustrates
some of the power of digital morphology, and foreshadows the discus-
sion that will take place. Regions can be linked by small numbers of pixels
that, when removed according to a set or carefully defined rules, yields a
different set of regions that have a clearer meaning or a different meaning
altogether.

Chapter 3 ■ Digital Morphology 87

(a) (b) (c)

(d)

Figure 3.1: (a) A collection of pixels consisting of four 4-connected regions. (b) Adding
a pixel seems to connect the regions, but does not; now there are five 4-connected
regions. (c) Three 8-connected regions, showing the diagonal connections allowed for
8-regions. There are five 4-regions in this image. (d) Setting one pixel to black (the grey
one) connects all regions together.

Digital morphology uses the geometry of small connected sets of pixels to
accomplish tasks that are useful in processing regions within images. Morphol-
ogy can count and mark connected regions in images, can fill in small holes,
and can smooth boundaries. These are important functions for some kinds
of vision processing, and some form of morphological processing is nearly
always one step in the process of locating and recognizing objects in images.

3.3 Elements of Digital Morphology—Binary
Operations

As has been explained, most morphological operations are defined on bi-level
images — that is, images that consist of either black or white pixels only. These
will be called binary morphological operators to distinguish them from the less
common grey-level morphological operations described in Section 3.2. For the
purpose of beginning the discussion, consider the image seen in Figure 3.2a.
The set of black pixels form a square object.

88 Chapter 3 ■ Digital Morphology

(a) (b) (c)

Figure 3.2: The effects of a simple binary dilation one a small object. (a) Original image.
(b) Dilation of the original by one pixel. (c) Dilation of the original by two pixels (dilation
of (b) by one pixel).

The object in Figure 3.2b is also square, but is one pixel larger in all directions.
It was obtained from the previous square by simply setting all white neighbors
of any black pixel to black. This amounts to a simple binary dilation, so named
because it causes the original object to grow larger. Figure 3.2c shows the result
of dilating Figure 3.2b by one pixel, which is the same as dilating Figure 3.2a
by two pixels; this process could be continued until the entire image consisted
entirely of black pixels, at which point the image would stop showing any
change.

This is a very basic example of digital morphology, one that can be imple-
mented directly by first marking all white pixels having at least one black
neighbor, and then setting all the marked pixels to black. This is not, how-
ever, how morphological operators are usually implemented. In general, the
object is considered to be a mathematical set of black pixels; because each
pixel is identified by its row and column indices, a pixel is said to be a
point in two-dimensional space (E2). The set of pixels comprising the object in
Figure 3.2a can now be written as {(3, 3)(3, 4)(4, 3)(4, 4)} if the upper-left pixel
in the image has the index (0,0). This set is too awkward to write out in full all
the time, so it will simply be called A. The operation shown in Figure 3.2 will
be called a ‘‘simple’’ binary dilation, because it is the most basic of what will
soon be seen to be a large set of possible dilations.

3.3.1 Binary Dilation
Now some definitions of simple set operations can be stated, with the goal
being to define dilation in a more general fashion in terms of sets. The translation
of the set A by the point x is defined, in set notation, as:

(A)x = {c|c = a + x, a ∈ A} (EQ 3.1)

For example, if x were at (1,2), then the first (upper left) pixel in Ax would
be (3, 3) + (1, 2) = (4, 5); all the pixels in A shift down by one row and right by

Chapter 3 ■ Digital Morphology 89

two columns in this case. This is a translation in the same sense that is seen in
computer graphics — a change in position by a specified amount.

The reflection of the set A is defined as:

Â = {c|c = −a, a ∈ A} (EQ 3.2)

This is really a rotation of the object A by 180 degrees about the origin.
The complement of the set A is the set of pixels not belonging to A This would
correspond to the white pixels in the figure, or in the language of set theory:

Ac = {c|c /∈ A} (EQ 3.3)

The intersection of the two sets A and B is the set of elements (pixels)
belonging to both A and B:

A ∩ B = {c|((c ∈ A) ∧ (c ∈ B))} (EQ 3.4)

The union of the two sets A and B is the set of pixels that belong to either A
or B, or to both:

A ∪ B = {c|(c ∈ A) ∨ (c ∈ B)} (EQ 3.5)

Finally, completing this collection of basic definitions, the difference between
the set A and the set B is:

A − B = {c|(c ∈ A) ∧ (c /∈ B)} (EQ 3.6)

which is the set of pixels that belong to A but not also to B. This is really just
the intersection of A with the complement of B.

It is now possible to define more formally what is meant by a dilation. A
dilation of the set A by the set B is:

A ⊕ B = {c|c = a + b, a ∈ A, b ∈ B} (EQ 3.7)

where A represents the image being operated on, and B is a second set of
pixels, a shape that operates on the pixels of A to produce the result; the set B
is called a structuring element, and its composition defines the nature of the
specific dilation. To explore this idea, let A be the set of Figure 3.2a, and let
B be the set {(0, 0)(0, 1)}. The pixels in the set C = A + B are computed using
Equation 3.7, which can be re-written in this case as:

A ⊕ B = (A + {(0, 0)}) ∪ (A + {(0, 1)}) (EQ 3.8)

There are four pixels in the set A, and because any pixel translated by (0,0)
does not change, those four will also be in the resulting set C after computing
C = A + {(0, 0)}:

(3, 3) + (0, 0) = (3, 3) (3, 4) + (0, 0) = (3, 4)
(4, 3) + (0, 0) = (4, 3) (4, 4) + (0, 0) = (4, 3)

90 Chapter 3 ■ Digital Morphology

The result of A + {(0, 1)} is:

(3, 3) + (0, 1) = (3, 4) (3, 4) + (0, 1) = (3, 5)
(4, 3) + (0, 1) = (4, 4) (4, 4) + (0, 1) = (4, 5)

The set C is the result of the dilation of A using structuring element B, and
consists of all the pixels listed above (some of which are duplicates). Figure 3.3
illustrates this operation, showing graphically the effect of the dilation. The
pixels marked with an X, either white or black, represent the origin of each
image. The location of the origin is really quite important. In the example
above, if the origin of B were the rightmost of the two pixels the effect of the
dilation would be to add pixels to the left of A, rather than to the right. The
set B in this case would be {(0, −1)(0, 0)}.

A =

B = = structuring element

(b)(a) (c)

(d)

Figure 3.3: Dilation of the set A (Figure 3.2a) by the set B. (a) The two sets. (b) The set
obtained by adding (0,0) to all elements of A. (c) The set obtained by adding (0,1) to all
elements of A. (d) The union of the two sets is the result of the dilation.

Moving back to the simple binary dilation that was performed in Figure 3.2,
one question that remains is: What was the structuring element that was
used? Note that the object increases in size in all directions, and by a single
pixel. From the example just completed, it was observed that if the structuring
element has a set pixel to the right of the origin, then a dilation that uses
that structuring element ‘‘grows’’ a layer of pixels on the right of the object.

Chapter 3 ■ Digital Morphology 91

To grow a layer of pixels in all directions, it seems to make sense to use a
structuring element having one pixel on every side of the origin — that is, a 3x3
square with the origin at the center. This structuring element will be named
‘‘simple’’ in the ensuing discussion and is correct in this instance, although it
is not always easy to determine the shape of the structuring element needed
to accomplish a specific task.

As a further example, consider the object and structuring element shown
in Figure 3.4. In this case, the origin of the structuring element B1 contains a
white pixel, implying that the origin is not included in the set B1. There is no rule
against this, but it is more difficult to see what will happen, so the example
will be done in detail.

The object image A1. A1 dilated B1.

Structuring element B1.

Figure 3.4: Dilation by a structuring element that does not include the origin. Some pixels
that are set in the original image are not set in the dilated image.

The image to be dilated, A1, has the following set representation:

A1 = {(1, 1) (2, 2) (2, 3) (3, 2) (3, 3) (4, 4)}
The structuring element B1 is:

B1 = {(0, −1) (0, 1)}
The translation of A1 by (0, −1) yields

(A1)(0,−1) = {(1, 0) (2, 1) (2, 2) (3, 1) (3, 2) (4, 3)}
And the translation of A1 by (0,1) yields:

(A1)(0,1) = {(1, 2) (2, 3) (2, 4) (3, 3) (3, 4) (4, 5)}
The dilation of A1 by B1 is the union of (A1)(0,−1) with (A1)(0,1), and is shown

in Figure 3.11. Notice that the original object pixels, those belonging to A1, are
not necessarily set in the result; (1,1) and (4,4), for example, are set in A1 but
not in A1 + B1. This is the effect of the origin not being a part of B1.

The manner in which the dilation is calculated above presumes that a
dilation can be considered to be the union of all the translations specified by
the structuring element — that is, as

A ⊕ B = ∪
b ∈ B

(A)b (EQ 3.9)

92 Chapter 3 ■ Digital Morphology

Not only is this true, but because dilation is commutative, a dilation can also
be considered to be the union of all translations of the structuring element by
all pixels in the image:

A ⊕ B = ∪
a ∈ A

(B)a (EQ 3.10)

This gives a clue concerning a possible implementation for the dilation
operator. Think of the structuring element as a template, and move it over the
image. When the origin of the structuring element aligns with a black pixel in
the image all the image pixels that correspond to black pixels in the structuring
element are marked, and will later be changed to black. After the entire image
has been swept by the structuring element, the dilation calculation is complete.
Normally the dilation is not computed in place — that is, where the result is
copied over top of the original image. A third image, initially all white, is used
to store the dilation while it is being computed.

3.3.2 Implementing Binary Dilation
The general implementation of dilation for bi-level images consists of two
parts: a program that creates a dilated image given an input image and a
structuring element, and a function that will do the same but that can be called
from another function, and allow dilation to be incorporated into a larger
imaging program. The program, which will be called BinDil, reads the names
of three files from standard input:

BinDil

Enter input image filename: squares.pbm

Enter structuring element filename: simple.pbm

Enter output filename: xx.pbm

whereupon the following output is created:

PBM file class 1 size 3 columns x 3 rows Max=1

BinDil: Perform a binary dilation on image s̋quares.pbm˝

Structuring element is:

==

Structuring element 3x3 origin at (1,1)

1 1 1

1 1 1

1 1 1

==

PBM file class 1 size 10 columns x 10 rows Max=1

All three arguments are filenames:

squares.pbm is the name of the image file that contains the image to be
dilated.

Chapter 3 ■ Digital Morphology 93

simple.pbm contains the data for the structuring element.

xx.pbm is the name of the file that will be created to hold the resulting
dilated image.

Both the input file and the output file will be in PBM image file format.
The structuring element file has its own special format, because the location
of the origin is needed. Because dilation is commutative, though, the struc-
turing element should also be a PBM image. It was decided to add a small
‘‘feature’’ to the definition of a PBM file — if a comment begins with the string
#origin, then the coordinates of the origin of the image will follow, first the
column and then the row. Such a file is still a PBM image file, and can still
be read in and displayed as such because the new specification occurs in a
comment. If no origin is explicitly given, it is assumed to be at (0,0).

Thus, the PBM file for the structuring element B1 of Figure 3.4 would be:

P1

#origin 1 0

3 1

1 0 1

This file will be called B1.pbm. To perform the dilation seen in Figure 3.4, the
call to BinDil would be:

BinDil

Enter input image filename: A1.pbm

Enter structuring element filename: B1.pbm

Enter output filename: A1dil.pbm

where the file A1.pbm contains the image A1, and A1dil.pbm will be the file
into which the dilated image will be written.

The program BinDil really does not do very much. It merely reads in the
images and passes them to the function that does the work: the C function
bin_dilate, defined as

int bin_dilate (IMAGE im, SE p);

This function implements a dilation by the structuring element pointed to by
p by moving the origin of p to each of the black pixel positions in the image im,
and then copying the black pixels from p to the corresponding positions in the
output image. Figure 3.5 shows this process, which is basically that specified
in Equation 3.9, and which has a strong resemblance to a convolution.

As shown in Figure 3.6, the function bin_dilate looks through the data
image for black pixels, calling dil_apply when it finds one; this function
performs the actual copy from the current position of the structuring element
to the output (dilated) image. A temporary image is used for the result, which
is copied over the input image after the dilation is complete.

94 Chapter 3 ■ Digital Morphology

(a) (b) (c)

Figure 3.5: Dilating an image using a structuring element. (a) The origin of the structuring
element is placed over the first black pixel in the image, and the pixels in the structuring
element are copied into their corresponding positions in the result image. (b) Then the
structuring element is placed over the next black pixel in the image and the process is
repeated. (c) This is done for every black pixel in the image.

3.3.3 Binary Erosion
If dilation can be said to add pixels to an object, or to make it bigger, erosion
will make an image smaller. In the simplest case, a binary erosion will remove
the outer layer of pixels from an object. For example, Figure 3.2b is the result of
such a simple erosion process applied to Figure 3.2c. This can be implemented
by marking all black pixels having at least one white neighbor and then
setting to white all the marked pixels. The structuring element implicit in this
implementation is the same 3x3 array of black pixels that defined the simple
binary dilation.

In general, the erosion of image A by structuring element B can be defined as

A � B = {c|(B)c ⊆ A} (EQ 3.11)

In other words, it is the set of all pixels c such that the structuring element
B translated by c corresponds to a set of black pixels in A. That the result of
an erosion is a subset of the original image seems clear enough; any pixels
that do not match the pattern defined by the black pixels in the structuring
element will not belong to the result. However, the manner in which the
erosion removes pixels is not clear, at least at first, so a few examples are
in order, and the statement above that the eroded image is a subset of the
original is not necessarily true if the structuring element does not contain the
origin.

Chapter 3 ■ Digital Morphology 95

void dil_apply (IMAGE im, SE p, int ii, int jj, IMAGE res)

{

int i,j, is,js, ie, je, k;

/* Find start and end pixel in IM */

is = ii - p->oi; js = jj - p->oj; ie = is + p->nr; je = js + p->nc;

/* Place SE over the image from (is,js) to (ie,je). Set pixels

in RES if the corresponding SE pixel is 1; else do nothing. */

for (i=is; i<ie; i++)

for (j=js; j<je; j++)

{

if (range(im,i,j))

{

k = (p->data[i-is][j-js] == 1);

if (k>=0) res->data[i][j] |= k;

} } }

int bin_dilate (IMAGE im, SE p)

{

IMAGE tmp;

int i,j;

/* Source image empty? */

if (im==0)

{

printf (B̋ad image in BIN_DILATE\n˝);

return 0;

}

/* Create a result image */

tmp = newimage (im->info->nr, im->info->nc);

if (tmp == 0)

{

printf (Őut of memory in BIN_DILATE.\n˝);

return 0;

}

for (i=0; i<tmp->info->nr; i++)

for (j=0; j<tmp->info->nc; j++)

tmp->data[i][j] = 0;

/* Apply the SE to each black pixel of the input */

for (i=0; i<im->info->nr; i++)

for (j=0; j<im->info->nc; j++)

if (im->data[i][j] == WHITE)

dil_apply (im, p, i, j, tmp);

/* Copy result over the input */

for (i=0; i<im->info->nr; i++)

for (j=0; j<im->info->nc; j++)

im->data[i][j] = tmp->data[i][j];

/* Free the result image - it was a temp */

freeimage (tmp);

return 1;

}

Figure 3.6: C source code for the dilation of a binary image by a binary structuring element.

96 Chapter 3 ■ Digital Morphology

First, a simple example. Consider the structuring element

B = {(0, 0) (1, 0)}

and the object image
A = {(3, 3) (3, 4) (4, 3) (4, 4)}

The set A � B is the set of translations of B that align B over a set of black
pixels in A. This means that not all translations need to be considered, but only
those that initially place the origin of B at one of the members of A. There are
four such translations:

B(3,3) = {(3, 3) (4, 3)}
B(3,4) = {(3, 4) (4, 4)}
B(4,3) = {(4, 3) (5, 3)}
B(4,4) = {(4, 4) (5, 4)}

In two cases, B(3,3) and B(3,4), the resulting (translated) set consists of pixels
that are all members of A, and so those pixels will appear in the erosion of A
by B. This example is illustrated in Figure 3.7.

Now consider the structuring element B2 = {(1, 0)}; in this case the origin is
not a member of B2. The erosion A � B can be computed as before, except that
now the origin of the structuring element need not correspond to a black pixel
in the image. There are quite a few legal positions, but the only ones that result
in a match are:

B(2,3) = {(3, 3)}
B(2,4) = {(3, 4)}
B(3,3) = {(4, 3)}
B(3,4) = {(4, 4)}

This means that the result of the erosion is

{(2, 3) (2, 4) (3, 3) (3, 4)}

which is not a subset of the original.
It is important to realize that erosion and dilation are not inverse operations.

Although there are some situations where an erosion will undo the effect of a
dilation exactly, this is not true in general. Indeed, as will be observed later,
this fact can be used to perform useful operations on images. However, erosion
and dilation are duals of each other in the following sense:

(A � B)c = Ac ⊕ B̂ (EQ 3.12)

Chapter 3 ■ Digital Morphology 97

In more or less plain English, this says that the complement of an erosion is
the same as a dilation of the complement image by the reflected structuring
element. If the structuring element is symmetrical, reflecting it does not change
it, and the implication of Equation 3.12 is that the complement of an erosion
of an image is the dilation of the background, in the case where simple is the
structuring element.

The structuring element is translated to the position
of a black pixel in the image. In this case all members
of the structuring element correspond to black image
pixels, so the result is a black pixel.

Now the structuring element is translated to the next
black pixel in the image, and there is one pixel that
does not match. The result is a white pixel.

At the next translation there is another match so,
again, the pixel in the output image that corresponds
to the translated origin of the structuring element is
set to black.

The final translation is not a match, and the result is a
white pixel. The remaining image pixels are white and
could not match the origin of the structuring element;
they need not be considered.

Figure 3.7: Binary erosion using a simple structuring element.

98 Chapter 3 ■ Digital Morphology

The proof of the erosion-dilation duality is fairly simple and may yield some
insights into how morphological expressions are manipulated and validated.
The definition of erosion is:

A � B = {z|(B)z ⊆ A} (EQ 3.13)

So, the complement of the erosion is:

(A � B)c = {z|(B)z ⊆ A}c (EQ 3.14)

If (B)z is a subset of A, then the intersection of (B)z with A is not empty:

(A � B)c = {z|((B)z ∩ A) �= ∅}c (EQ 3.15)

but the intersection with Ac will be empty:{
z|(B)z ∩ Ac = ∅

}c (EQ 3.16)

and the set of pixels not having this property is the complement of the set
that does: {

z|((B)z ∩ Ac) �= ∅

}
(EQ 3.17)

By the definition of translation in Equation 3.1, if (B)z intersects Ac, then

{z|b + z ∈ Ac, b ∈ B} (EQ 3.18)

which is the same thing as

{z|b + z = a, a ∈ Ac, b ∈ B} (EQ 3.19)

Now if a = b + z, then z = a − b:

{z|z = a − b, a ∈ Ac, b ∈ B} (EQ 3.20)

Finally, using the definition of reflection, if b is a member of B, then −b is a
member of the reflection of B:

{z|z = a + b, a ∈ Ac, b ∈ B̂} (EQ 3.21)

which is the definition of Ac ⊕ B̂.
The erosion operation also brings up an issue that was not a concern about

dilation: the idea of a ‘‘don’t care’’ state in the structuring element. When using
a strictly binary structuring element to perform an erosion, the member black
pixels must correspond to black pixels in the image in order to set the pixel
in the result, but the same is not true for a white (0) pixel in the structuring
element. We don’t care what the corresponding pixel in the image might be
when the structuring element pixel is white.

Figure 3.8 gives some examples of erosions of a simple image by a collection
of different structuring elements. The basic shape of the structuring element

Chapter 3 ■ Digital Morphology 99

is, in each case, identified if it appears in the data image. The intent of SE2,
for example, is to identify ‘‘T’’ intersections of a vertical line with a horizontal
line on the left, and SE3 and SE4 attempt to isolate corners. SE6 has three
white pixels spacing apart two black ones; at first glance it might be used to
locate horizontal lines spaced three pixels apart, but it will also respond to
vertical line segments. This sort of unexpected (to the beginner) behavior leads
to difficulties in designing structuring elements for specific tasks.

SE4

SE3

SE2

SE1
SE6

SE5

Figure 3.8: Examples of erosions by various structuring elements. (left and above) simple
binary structuring elements.

Figure 3.9 is a better illustration of the use of erosion elements in a practical
sense. The problem is to design a structuring element that will locate the staff
lines in a raster image of printed music. The basic problem is to isolate the
symbols, so once identified the staff lines will be removed. The structuring
element consists of five horizontal straight line segments separated by ‘‘don’t
care’’ pixels — the latter corresponds to whatever occupies the space between
the staff lines: note heads, sharps, etc. In effect, these elements act as spacers,
permitting the combination of five distinct structuring elements into one.

After an erosion by the structuring element, each short section of staff lines
has been reduced to a single pixel. The staff lines can be regenerated by a
dilation of the eroded image by the same structuring element (Figure 3.9d). If
it is necessary to remove the staff lines, subtract this image from the original

100 Chapter 3 ■ Digital Morphology

(Figure 3.9e). There are now gaps in the image where the lines used to be,
but otherwise the music symbols are free of the lines. A further morphological
step can fill in some of the gaps (Figure 3.9f).

(a)

(b)

(c) (d)

(e) (f)

Figure 3.9: Morphological removal of staff lines from printed music. (a) The original
image. (b) The structuring element. (c) Result of the erosion of (a) by (b). (d) Result of
dilating again by the same structuring element. (e) Subtract (d) from (a). (f) Use a simple
morphological operator to fill in the gaps.

3.3.4 Implementation of Binary Erosion
As was done previously in the case of dilation, the implementation will consist
of a program that creates an eroded image given an input image and a
structuring element, and a function that does the actual work. The program is
in the same style as BinDil, and is called BinErode:

BinErode

Enter input image file name: squares.pbm

Enter structuring element file name: simple.pbm

Enter output filename: xx.pbm

The PBM file for the structuring element of Figure 3.9b would be:

P1

#origin 1 0

3 16

1 1 1

0 0 0

0 0 0

0 0 0

1 1 1

0 0 0

0 0 0

0 0 0

1 1 1

0 0 0

Chapter 3 ■ Digital Morphology 101

0 0 0

1 1 1

0 0 0

0 0 0

0 0 0

1 1 1

This file will be called elise_se.pbm. To perform the dilation seen in
Figure 3.9, the call to BinErode would be:

BinErode

Enter input image file name: elise.pbm

Enter structuring element file name: elise_SE.pbm

Enter output filename: out1.pbm

where the elise.pbm file contains the image 3.8a, and out1.pbm will be the
file into which the dilated image will be written (Figure 3.9c). The C function
bin_erode is implemented in a very similar manner to bin_dilate, and
appears in Figure 3.10.

3.3.5 Opening and Closing
The application of an erosion immediately followed by a dilation using the
same structuring element is referred to as an opening operation. The name
opening is a descriptive one, describing the observation that the operation
tends to ‘‘open’’ small gaps or spaces between touching objects in an image.
This effect is most easily observed when using the simple structuring element.
Figure 3.11 shows an image having a collection of small objects, some of them
touching each other. After an opening using simple, the objects are better
isolated and might now be counted or classified.

Figure 3.11 also illustrates another, and quite common, use of opening: the
removal of noise. When a noisy grey-level image is thresholded some of the
noise pixels are above the threshold, and result in isolated pixels in random
locations. The erosion step in an opening will remove isolated pixels as well as
boundaries of objects, and the dilation step will restore most of the boundary
pixels without restoring the noise. This process seems to be successful at
removing spurious black pixels, but does not remove the white ones.

The example in Figure 3.9 is actually an example of opening, albeit with
a more complex structuring element. The image was eroded, leaving only a
horizontal line, and then dilated by the same structuring element, which is
certainly an opening. What is being eroded in this case is all portions of the
image that are not staff lines, which the dilation subsequently restores. The
same description of the process applies to Figure 3.11; what is being eroded is
all parts of the image that are not small black squares, which are restored by
the dilation thus removing everything except that in which we are interested.

102 Chapter 3 ■ Digital Morphology

/* Apply a erosion step on one pixel of IM, result to RES */

void erode_apply (IMAGE im, SE p, int ii, int jj, IMAGE res)

{

int i,j, is,js, ie, je, k, r;

/* Find start and end pixel in IM */

is = ii - p->oi; js = jj - p->oj;

ie = is + p->nr; je = js + p->nc;

/* Place SE over the image from (is,js) to (ie,je). Set

pixels in RES

if the corresponding pixels in the image agree. */

r = 1;

for (i=is; i<ie; i++)

for (j=js; j<je; j++)

{

if (range(im,i,j))

{

k = p->data[i-is][j-js];

if (k == 1 && im->data[i][j]==0) r = 0;

} else if (p->data[i-is][j-js] != 0) r = 0;

}

res->data[ii][jj] = r;

} }

int bin_erode (IMAGE im, SE p)

{

IMAGE tmp;

int i,j;

/* Create a result image */

tmp = newimage (im->info->nr, im->info->nc);

for (i=0; i<tmp->info->nr; i++)

for (j=0; j<tmp->info->nc; j++)

tmp->data[i][j] = 0;

/* Apply the SE to each black pixel of the input */

for (i=0; i<im->info->nr; i++)

for (j=0; j<im->info->nc; j++)

erode_apply (im, p, i, j, tmp);

/* Copy result over the input */

for (i=0; i<im->info->nr; i++)

for (j=0; j<im->info->nc; j++)

im->data[i][j] = tmp->data[i][j];

/* Free the result image - it was a temp */

freeimage (tmp);

return 1;

}

Figure 3.10: Slightly shortened version of the C source code for bin_erode. (See the
website for the complete version.) Some error checking has been removed for brevity.

Chapter 3 ■ Digital Morphology 103

(a) (b) (c) (d)

Figure 3.11: The use of opening. (a) An image having many connected objects. (b)
Objects can be isolated by opening using the simple structuring element. (c) An image
that has been subjected to noise. (d) The noisy image after opening, showing that the
black noise pixels have been removed.

A closing is similar to an opening, except that the dilation is performed first,
followed by an erosion using the same structuring element. If an opening
creates small gaps in the image, a closing will fill them, or ‘‘close’’ the gaps.
Figure 3.12a shows a closing applied to the image of Figure 3.11d, which
you may remember was opened in an attempt to remove noise. The closing
removes much of the white pixel noise, giving a fairly clean image.

(a)

(b)

(c)

Figure 3.12: The closing operation. (a) The result of closing Figure 3.11d using the simple
structuring element. (b) A thresholded image of a circuit board, showing broken traces. (c)
The same image after closing, showing that most of the breaks have been repaired.

The same figure shows an application of a closing to reconnect broken
features. Figure 3.12b is a section of a printed circuit board that has been
thresholded. Noise somewhere in the process has resulted in the traces

104 Chapter 3 ■ Digital Morphology

connecting the components being broken in a number of places. Closing
this image (Figure 3.12c) fixes many of these breaks, but not all of them. It
is important to realize that when using real images it is rare for any single
technique to provide a complete and perfect solution to an image processing
or vision problem. A more complete method for fixing the circuit board may
use four or five more structuring elements and two or three other techniques
outside of morphology.

Closing can also be used for smoothing the outline of objects in an image.
Sometimes digitization followed by thresholding can give a jagged appearance
to boundaries; in other cases the objects are naturally rough, and it may
be necessary to determine how rough the outline is. In either case, closing can be
used. However, more than one structuring element may be needed, because the
simple structuring element is only useful for removing or smoothing single
pixel irregularities. Another possibility is repeated application of dilation
followed by the same number of erosions; N dilation/erosion applications
should result in the smoothing of irregularities of N pixels in size.

First consider the smoothing application, and for this purpose Figure 3.12a
will be used as an example. This image has been both opened and closed
already, and another closing will not have any effect. However, the outline
is still jagged, and there are still white holes in the body of the object. An
opening of depth 2 — that is, two dilations followed by two erosions — gives
Figure 3.13a.

(a) (b) (c) (d) (e) (f)

Figure 3.13: Multiple closings for outline smoothing. (a) Glyph from Figure 3.12a after
a depth 2 closing. (b) After a depth 3 closing. (c) A chess piece. (d) Thresholded chess
piece showing irregularities in the outline and some holes. (e) Chess piece after closing.
(f) Chess piece after a depth 2 closing.

Note that the holes have been closed and that most of the outline irregular-
ities are gone. On opening of depth 3, very little change is seen (one outline
pixel is deleted), and no further improvement can be hoped for. The example
of the chess piece in the same figure shows more specifically the kind of
irregularities introduced sometimes by thresholding, and illustrates the effect
that closings can have in this case.

Chapter 3 ■ Digital Morphology 105

Most opening and closings use the simple structuring element in practice.
The traditional approach to computing an opening of depth N is to perform
N consecutive binary erosions followed by N binary dilations. This means
that computing all the openings of an image up to depth ten requires that 110
erosions or dilations be performed. If erosion and dilation are implemented in
a naive fashion, this will require 220 passes through the image. The alternative
is to save each of the ten erosions of the original image; each of these is then
dilated by the proper number of iterations to give the ten opened images. The
amount of storage required for this latter option can be prohibitive, and if file
storage is used the I/O time can be large also.

A fast erosion method is based on the distance map of each object, where
the numerical value of each pixel is replaced by a new value representing the
distance of that pixel from the nearest background pixel. Pixels on a boundary
would have a value of 1, being that they are 1 pixel width from a background
pixel; pixels that are 2 widths from the background would be given a value
of 2, and so on. The result has the appearance of a contour map, where the
contours represent the distance from the boundary. For example, the object
shown in Figure 3.14a has the distance map shown in Figure 3.14b.

0 0
0 0

0 . . 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 . 1 0 0 0 0 0 0

0 0 0 0 0 0 . 1 . 2 2 2 2 2 2 2 3 3 3 3 . 3 . 2 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 2 2 3 4 5 5 5 5 4 3 3 2 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 2 2 3 4 5 . . 5 4 3 2 2 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 2 2 3 3 3 4 . 5 5 . 5 5 4 4 3 3 2 2 1 1 0 0 0 0 0 0

0 . 0 0 0 0 0

0 1 1 1 1 1 1 . 0 0 0 0 0

0 0 0 0 0 . . . 0 0 0 0 0 0 1 1 1 1 2 2 2 2 . 2 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 . 2 . 3 3 3 3 3 3 . . 3 3 3 2 2 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 2 3 4 5 . . 5 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 2 3 3 4 5 . . 5 4 3 3 2 2 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 2 . 3 3 3 3 3 4 4 5 5 5 . . 4 4 3 3 2 1 0 0 0 0 0 0

0 0 0 0 1 . . 1 0 0 1 1 2 2 2 3 3 4 4 4 4 3 3 2 2 1 0 0 0 0 0 0

0 0 0 0 0 . . 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 . 2 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 2 . 3 4 4 4 4 4 4 . 3 2 2 2 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 2 3 4 5 . . 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 2 2 2 3 4 4 5 . . 5 4 4 3 3 2 2 1 1 0 0 0 0 0 0 0

0 0 0 0 1 1 2 2 2 2 2 2 3 3 4 4 4 4 . 3 2 1 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 1 1 1 2 2 3 3 3 . 3 3 2 2 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 2 2 2 2 1 1 0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0 1 1 2 3 4 5 . . 5 4 3 2 2 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 2 2 3 4 5 . . 5 4 3 2 2 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 2 . 3 . . 4 4 4 5 5 . 5 . 4 4 3 3 2 2 1 0 0 0 0 0 0

0 0 0 0 1 . . 1 1 1 1 2 2 3 3 3 4 4 . . 4 4 3 3 2 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 2 3 3 3 2 2 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0
0 0

(b) (c)

0 0
0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0 0
0 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 2 2 2 2 3 2 1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 2 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 2 2 2 2 2 2 2 2 3 3 3 3 4 3 3 2 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 2 3 3 3 3 3 3 3 4 4 3 3 3 2 2 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 2 3 3 4 4 4 4 4 4 4 3 2 2 2 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 2 3 4 5 5 5 5 4 3 3 2 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 2 3 4 5 6 6 5 4 3 2 2 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 6 5 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 2 3 4 5 6 6 5 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 2 3 4 5 6 6 5 4 3 2 2 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 2 3 3 4 5 6 6 5 4 3 3 2 2 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 2 2 2 3 4 4 5 6 6 5 4 4 3 3 2 2 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 2 2 3 3 3 4 5 5 5 6 5 5 4 4 3 3 2 2 1 1 0 0 0 0 0 0
0 0 0 0 0 1 2 3 3 4 4 4 4 4 5 5 6 5 5 4 4 3 3 2 2 1 0 0 0 0 0 0
0 0 0 0 0 1 2 3 3 3 3 3 3 4 4 5 5 5 5 5 4 4 3 3 2 1 0 0 0 0 0 0
0 0 0 0 1 1 2 2 2 2 2 2 3 3 4 4 4 5 5 5 5 4 4 3 2 1 0 0 0 0 0 0
0 0 0 0 1 2 2 1 1 1 1 2 2 3 3 3 4 4 5 5 4 4 3 3 2 1 0 0 0 0 0 0
0 0 0 0 1 2 2 1 0 0 1 1 2 2 2 3 3 4 4 4 4 3 3 2 2 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 1 1 1 2 2 3 3 3 4 3 3 2 2 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 2 3 3 3 2 2 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 2 2 2 2 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0
0 0
0 0

(a)

Figure 3.14: Erosion using a distance map. (a) A blob as an example of an image to be
eroded. (b) The distance map of the blob image. (c) Nodal pixels in this image are shown
as periods (.).

The distance map contains enough information to perform an erosion by
any number of pixels in just one pass through the image; in other words,
all erosions have been encoded into one image. This globally eroded image
can be produced in just two passes through the original image, and a simple
thresholding operation will give any desired erosion.

106 Chapter 3 ■ Digital Morphology

There is also a way, similar to that of global erosion, to encode all possible
openings as one grey-level image, and all possible closings can be computed
at the same time. First, as in global erosion, the distance map of the image
is found. Then all pixels that do not have at least one neighbor nearer to the
background and one neighbor more distant are located and marked: these will
be called nodal pixels. Figure 3.14c shows the nodal pixels associated with the
object of Figure 3.14a. If the distance map is thought of as a three-dimensional
surface where the distance from the background is represented as height, every
pixel can be thought of as being the peak of a pyramid having a standardized
slope. Peaks not included in any other pyramid are the nodal pixels. One way
to locate nodal pixels is to scan the distance map, looking at all object pixels;
find the minimum and maximum value of all neighbors of the target pixel, and
compute MAX-MIN. If this value is less than the maximum possible, which is
2 when using 8-distance, the pixel is nodal.

To encode all openings of the object, a digital disk is drawn centered at each
nodal point. The pixel values and the extent of the disk are equal to the value
of the nodal pixel. If a pixel has already been drawn, it will take on the larger
of its current value or the new one being painted. The resulting object has
the same outline as the original binary image, so the object can be re-created
from the nodal pixels alone. In addition, the grey levels of this globally opened
image represent an encoding of all possible openings. As an example, consider
the disk shaped object in Figure 3.15a and the corresponding distance map of
Figure 3.15b.

There are nine nodal points: four have the value 3, and the remainder have
the value 5. Thresholding the encoded image yields an opening having depth
equal to the threshold.

All possible closings can be encoded along with the openings if the distance
map is changed to include the distance of background pixels from an object.
Closings are coded as values less than some arbitrary central value (say, 128)
and openings are coded as values greater than this central value.

As a practical case, consider an example from geology. To a geologist, the
pores that exist in oil-bearing (reservoir) rock are of substantial interest; oil
resides in these pores. Porosity of reservoir rock can be measured by slicing
the rock into thin sections after filling the pores with a colored resin. The
slices show microscopic features of grain and pore space, and one method of
characterizing the shapes of the pores is to examine the differences between
openings of increasing depth. Openings of higher orders are smoother than
those of lower orders, and the difference between the order N opening and the
order N + 1 opening is referred to as the roughness of order N. The histogram of
the pixels in each opened pore image by order of roughness yields a roughness
spectrum, which has been extensively applied to the classification of pore shape.

Chapter 3 ■ Digital Morphology 107

(a) (b) (c)

(d) (e) (f)

0 0 0 00 0 0 00 0 00 0 0 0
0 0 0 10 1 1 00 1 01 0 0 0

0 0 1 21 2 2 12 2 12 2 0 0

0 1 2 41 3 3 13 4 24 3 1 0

0 1 3 52 4 4 23 5 35 3 1 0

0 1 2 41 3 3 13 4 24 3 1 0

0 0 1 21 2 2 12 2 13 2 0 0

0 0 0 10 1 1 00 1 01 0 0 0

0 0 1 20 1 1 01 2 12 1 0 0

0 0 2 31 3 3 12 3 23 2 0 0

0 1 2 42 4 4 23 4 25 3 1 0

0 1 2 42 4 4 23 4 25 3 1 0

0 0 2 31 3 3 22 3 23 3 0 0

0 0 1 20 1 1 01 2 12 1 0 0

0 0 0 00 0 0 00 0 00 0 0 0

0 0 0 00 0 0 00 0 00 0 0 0
0 0 0 30 3 3 00 3 03 0 0 0

0 0 33 33. 0 0

0 3 3 33 3 3 33 3 33 3 3 0

0 3 . .3 3 3 33 . .. 3 3 0

0 3 3 33 3 3 33 3 33 3 3 0

0 0 33 33. 0 0

0 0 0 10 1 1 00 1 01 0 0 0

0 0 30 3 3 033 0 0

0 0 33 333 0 0

0 3 3 33 3 3 33 3 3. 3 3 0

0 3 3 33 3 3 33 3 3. 3 3 0

0 0 33 333 0 0

0 0 30 3 3 033 0 0

0 0 0 00 0 0 00 0 00 0 0 0

0 0 0 00 0 0 00 0 00 0 0 0
0 0 0 10 1 1 00 1 01 0 0 0

0 0 1 21 2 2 12 2 1. 2 0 0

0 1 2 41 3 3 13 4 24 3 1 0

0 1 . .2 4 4 23 . .. 3 1 0

0 1 2 41 3 3 13 4 24 3 1 0

0 0 1 21 2 2 12 2 1. 2 0 0

0 0 0 10 1 1 00 1 01 0 0 0

0 0 1 20 1 1 01 2 12 1 0 0

0 0 2 31 3 3 12 3 23 2 0 0

0 1 2 42 4 4 23 4 2. 3 1 0

0 1 2 42 4 4 23 4 2. 3 1 0

0 0 2 31 3 3 22 3 23 3 0 0

0 0 1 20 1 1 01 2 12 1 0 0

0 0 0 00 0 0 00 0 00 0 0 0

0 0 0 00 0 0 00 0 00 0 0 0
0 0 00 00 00 0 0

0 0 5 55 5 5 55 5 5. 5 0 0

0 5 55 5 5 55 5 55 5 0

0 . .5 5 5 55 . .. 5 0

0 5 55 5 5 55 5 55 5 0

0 0 5 55 5 5 55 5 5. 5 0 0

0 0 00 00 00 0 0

0 0 5 50 5 5 05 5 55 5 0 0

0 0 5 55 5 5 55 5 55 5 0 0

0 5 55 5 5 55 5 5. 5 0

0 5 55 5 5 55 5 5. 5 0

0 0 5 55 5 5 55 5 55 5 0 0

0 0 5 50 5 5 05 5 55 5 0 0

0 0 0 00 0 0 00 0 00 0 0 0

0 0 0 00 0 0 00 0 00 0 0 0
0 0 0 30 3 3 00 3 03 0 0 0

0 0 5 55 5 5 55 5 55 5 0 0

0 3 5 55 5 5 55 5 55 5 3 0

0 3 5 55 5 5 55 5 55 5 3 0

0 3 5 55 5 5 55 5 55 5 3 0

0 0 5 55 5 5 55 5 55 5 0 0

0 0 0 30 3 3 00 3 03 0 0 0

0 0 5 50 5 5 05 5 55 5 0 0

0 0 5 55 5 5 55 5 55 5 0 0

0 3 5 55 5 5 55 5 55 5 3 0

0 3 5 55 5 5 55 5 55 5 3 0

0 0 5 55 5 5 55 5 55 5 0 0

0 0 5 50 5 5 05 5 55 5 0 0

0 0 0 00 0 0 00 0 00 0 0 0

Figure 3.15: Multiple closings for outline smoothing. (a) Glyph from Figure 3.12a after
a depth 2 closing. (b) After a depth 3 closing. (c) A chess piece. (d) Thresholded chess
piece showing irregularities in the outline and some holes. (e) Chess piece after closing.
(f) Chess piece after a depth 2 closing.

Figure 3.16 is a sample reservoir rock pore image having a size of 300x300
pixels. The results of opening using the distance encoded image are identical
with the results from the traditional erode-dilate method, although all openings
were found in only three passes through the image. Two sample openings
are shown, with the deleted pixels shown in grey. The roughness spectrum
can be calculated by repeatedly thresholding the image and counting the
pixels remaining after each step, but there is an easier way. The roughness
spectrum can now be found by simply computing the grey-level histogram of
the globally opened image.

3.3.6 MAX— A High-Level Programming Language
for Morphology
Many of the tools needed for experimenting with morphology are provided
in this chapter and on the accompanying website in the form of C func-
tions and procedures. However, their use requires a certain fluency in the
C language, and any given experiment may involve a sequence of compi-
lation/test/debug steps that can be time consuming. To avoid this, and to

108 Chapter 3 ■ Digital Morphology

encourage experimentation with morphological techniques, a programming
language named MAX (Morphology And eXperimentation) has been devised.
MAX is a very simple language in the style of Pascal and Modula, the sole
purpose of which is to evaluate morphological expressions.

(a) (b) (c)

Figure 3.16: Computing the roughness of reservoir rock pores. (a) A pore image. (b)
Opening of depth 3. Grey areas are pixels that have been changed. (c) Opening of depth 6.
Used by permission of Dr. N. Wardlaw, Department of Geology and Geophysics, University
of Calgary.

To help explain the use of MAX, here is a simple program that reads in two
images and copies them to new image files:

// Test of input and output in MAX.

image a, b;

begin

// Read in two images

do a << a̋˝;

do b << b̋˝;

// Copy them to new files.

do b>>˝copyb˝;

do a>>˝copya˝;

end;

The // characters begin a comment, which extends to the end of the line. The
MAX compiler ignores any characters within a comment. The first statements
in this program are declarations; all variables must be declared between the
beginning of the file and the first begin statement. MAX recognizes only three
types:

IMAGE is used for both data and structuring elements interchangeably.

INT is a traditional integer type.

PIXEL is a pair of integers that represent the row and column indices of a
pixel in an image.

Chapter 3 ■ Digital Morphology 109

Variables may be declared to be of any of these three types by stating the
type name followed by a list of variables having that type. STRING constants
are allowed in some cases, but there are no string variables.

The executable part of a MAX program is a sequence of statements enclosed
by a begin statement at the beginning and an end statement at the end.
A semicolon (;) separates each statement from the next in a statement sequence,
except before an end statement. The preceding program has only one kind of
statement: a DO statement. This is simply the word ‘‘do’’ followed by any legal
expression, and permits the expression to be evaluated without assigning the
value to anything.

The only operators seen above are << (input) and >> (output), in this case
applied to images. The expression a << “a“ reads an image in PBM file format
from the file named “a“ into the image variable a; if the string constant is the
empty string ““, then standard input is used as the input file, and if the string is
“$1“, then the first command line argument is copied into the string, allowing
a program to open dynamically specified file. In the preceding program, two
images are read into variables. These are immediately written again under
different names: the output operator >> works in the same way as the input
operator, creating a PBM image file from the specified image.

MAX has six different types of statements, designed to allow a great
deal of flexibility in what kinds of morphological operations can be easily
implemented. In summary, the legal statements are as follows:

if (expression) then statement

If the expression evaluates to a non-zero integer (TRUE), the statement
that follows will be executed. The statement can be a sequence of statements
enclosed by begin–end.

if (expression) then statement1 else statement2

This is another form of the if statement, but if the expression is 0 (FALSE),
statement2 is executed.

loop ... end

Repeat a sequence of code. When the end is reached, execution resumes
from the statement following the loop statement. Statements within the loop

must be separated by semicolons.

exit N when expression

Exit from a loop if the expression evaluates to a non-zero integer. If N is
omitted, the exit branches to the statement following the end of the nearest
enclosing loop. If N=2, we escape from the nearest 2 nested loops, and so on.

do expression

110 Chapter 3 ■ Digital Morphology

Evaluate the expression. This is mainly useful for input and output.

message expression

Print a message to standard output. If the expression is a string constant,
that string is printed on the screen. Integers and pixels can also be printed, and
images will be printed as a two-dimensional array of integers as if they were
structuring elements.

assignment

The assignment operator is :=. The type of the variable on the left of the
assignment operator must agree with the expression on the right of it. If the
expression is an image, the result of the assignment is a copy of that image.

For a small language, MAX has quite an array of operators, many of which
can operate on all three possible data types. The following table is a convenient
summary of all the legal MAX operators. Note that LEFT is the name of the
structuring element specific to the left of the operator, and RIGHT is the
structuring element to the right.

OPERATOR LEFT RIGHT RESULT DESCRIPTION

++ image image image Dilate LEFT by RIGHT (for
example, A++B).

-- image image image Erode LEFT by RIGHT (for
example, EG A--B).

<= image image int Subset: Is LEFT a subset of
RIGHT?

<= int int int Less than or equal to
(integer).

>= image image int Subset: Is RIGHT a subset of
LEFT?

>= int int int Greater or equal (integer).

> image image int Proper subset.

> int int int Greater than.

< image image int Proper subset.

< int int int Less than.

<> image image int Images not the same.

<> int int int Not equal.

Chapter 3 ■ Digital Morphology 111

OPERATOR LEFT RIGHT RESULT DESCRIPTION

<> pixel pixel int Not equal, pixels.

= image image int Are LEFT and RIGHT equal?

= int int int Integer equality.

= pixel pixel pixel Pixel equality.

= image int int Are all pixels in the image
equal to the given integer?

- image image image Set difference, LEFT-RIGHT.

- int int int Integer subtraction.

- pixel pixel pixel Vector subtraction.

+ image image image Union of images LEFT and
RIGHT.

+ int int int Integer addition.

+ pixel pixel pixel Vector addition.

+ image pixel image Add a pixel to an image (set
value).

+ pixel image image Add a pixel to an image (set
value).

* image image image Intersection of LEFT and
RIGHT.

* int int int Integer multiplication.

<< image string image Read an image from a PBM
format file named by the
string.

<< int string int Read an integer.

<< pixel string pixel Read a pixel (2 ints).

>> image string image Write an image to a PBM
format file named by the
string.

>> int string int Write an integer.

>> pixel string pixel Write a pixel (2 ints).

-> image pixel image Translate the image by the
pixel.

112 Chapter 3 ■ Digital Morphology

OPERATOR LEFT RIGHT RESULT DESCRIPTION

<- pixel image image Translate the image by the
pixel.

@ pixel image int Membership: Is the pixel in
the image?

[] [int, int] Pixel generator. Result is the
pixel whose row is the first int
and whose column is the
second int.

. image.rows
image.cols
image
.origin_x
image
.origin_y

Each image has 4 attributes:
number of rows and
columns, and the row and
column locations of the
origin. These can be accessed
by imagename.attrname.

. pixel.row
pixel.col

Each pixel has two attributes:
the row and column indices.

UNARY OPERATORS

∼ Set complement.

! Allocate a new image like the
given one.

The (integer) number of
isolated pixels in an image.

- Integer negation.

IMAGE GENERATOR

{PIXEL1, PIXEL2, ‘‘0110101 . . . ’’} Generates an image, whose
size is given by PIXEL1, whose
origin is given by PIXEL2, and
whose pixels are specified by
the string.

Parentheses can be used in expressions to specify the order of evaluation.
There is no precedence implicit in the operators other than that unary oper-
ators will be computed before binary ones, and evaluation is otherwise left
to right.

There is a collection of test programs named t1.max through t30.max; any
MAX program must have the .max suffix. Running the compiler is quite simple.
It used to run from the command line, but it is rare these days to run from the

Chapter 3 ■ Digital Morphology 113

command prompt. The compiler now asks for the source file name from an
input prompt:

MAX

MAX compiler: enter source code file name (ends in .max): t1.max

This will compile the program t1.max into C code file called t1.c. On most
systems this will be automatically compiled into the object file t1.exe and
then executed. In order for the C compilation to be successful, the files max.h

and maxlib.c must be in the same working directory.
As a tool for education and as a test bed for morphological experimentation

and testing of structuring elements, MAX is still unique (if perhaps not perfect).
For example, the program BinDil can now be written:

// Dilation using ++

image a, b;

begin

do (a << $̋1˝)++(b<< $̋2˝) >> $̋3˝

end;

Figure 3.17 shows a MAX program for doing a dilation the hard way: by
translating the structuring element to all pixel positions in the image being
dilated and accumulating the union of all these images (sets). From this
point forward, programs illustrating morphological operations will be written
in MAX.

3.3.7 The ‘‘Hit-and-Miss’’ Transform
The hit-and-miss transform is a morphological operator designed to locate
simple shapes within an image. It is based on erosion; this is natural, because
the erosion of A by S consists only of those pixels (locations) where S is
contained within A, or matches the set pixels in a small region of A. However,
it also includes places where the background pixels in that region do not
match those of S, and these locations would not normally be thought of as a
match. What we need is an operation that matches both the foreground and
the background pixels of S in A.

Matching the foreground pixels in S against those in A is a ‘‘hit’’, and is
accomplished with a simple erosion A � S. The background pixels in A are
those found in Ac, and while we could use Sc as the background for S a
more flexible approach is to specify the background pixels explicitly in a new
structuring element T. A ‘‘hit’’ in the background is called a ‘‘miss,’’ and is
found by Ac � T. We want the locations having both a ‘‘hit’’ and a ‘‘miss,’’
which are the pixels:

A ⊗ (S, T) = (A � S) ∩ (Ac � T) (EQ 3.22)

114 Chapter 3 ■ Digital Morphology

// MAX Program to perform a dilation the hard way.

//

int i,j;

image x, y, z;

begin

i := 0; j := 0;

y := !(x<<“$1“); // Allocate a result image like x.

do z<<“$2“; // Read the structuring element.

loop // For all indices i

j := 0;

loop // For all indices j

if ([i,j] @ x) then // Is pixel i,j in the image?

// Translate structuring element

by i,j

// and OR the result (union)

with y

y := y + (z->[i,j]);

j := j + 1; // Next j

exit when j >= x.cols; // j exceeds maximum column?

end;

i := i + 1; // Next i

exit when i >= y.rows; // i exceeds max row?

end;

do y>>“$3“; // Output the result.

end;

Figure 3.17: MAX program to compute a dilation by repeated translations and unions.

As an example, let’s use this transform to detect upper-right corners.
Figure 3.18a shows an image that could be interpreted as being two overlapping
squares. A corner will be a right angle consisting of the corner pixel and the
ones immediately below and to the left, as shown in Figure 3.18b. The figure
also shows the ‘‘hit’’ portion of the operation (c), the complement of the image
(d), and the structuring element used to model the background (e), the ‘‘miss’’
portion (f), and the result of the intersection of the ‘‘hit’’ and the ‘‘miss’’ (g).
The set pixels in the result both correspond to corners in the image.

Also notice that the background-structuring element is not the complement
of the foreground-structuring element; indeed, if it had been then the result
would have been an empty image because there is no match to its peculiar
shape in the complement image. The set pixels in the background-structuring
element are those that must be background pixels in the image in order for a
match to take place. Over-specification of these pixels results in few matches,
and under-specification results in too many. Careful selection, possibly through
experimentation, is needed.

By the way, the upper and right pixels in Figure 3.18f are white because they
correspond to locations where the structuring element 3.17e has black pixels

Chapter 3 ■ Digital Morphology 115

placed outside of the bounds of the image. The complement operator produces
an image of the same size as the image being complemented, although when
using sets this would not be so. This problem can be avoided by copying the
input image to a bigger image before doing the complement.

(a) (b) (c)

(g)

(d) (e) (f)

Figure 3.18: Illustration of the hit-and-miss transform. (a) The image to be examined. (b)
Foreground-structuring element for the location of upper-right corners. (c) The erosion of
(a) by (b) — the ‘‘hit’’ portion of the computation. (d) The complement of (a). (e) The
background-structuring element, showing that the three pixels to the upper right of the
corner must be background pixels. (f) The erosion of (d) by (e), or the ‘‘miss’’ portion of
the computation. (g) The intersection of (c) and (f) — the result, showing the location of
each of the two upper-right corners in the original image.

The MAX program that performs a hit-and-miss transform is:

// Hit-and-miss transform

image a, se1, se2;

begin

do a << “$1“;

se1 := {[5,5], [2,1], “0000000000110000100000000“};

se2 := {[5,5], [2,1], “0000001100001000000000000“};

a := (a--se1)*(~a -- se2);

message a;

end;

116 Chapter 3 ■ Digital Morphology

3.3.8 Identifying Region Boundaries
The pixels on the boundary of an object are those that have at least one
neighbor that belongs to the background. Because any background neighbor
is involved it cannot be known in advance which neighbor to look for, and a
single structuring element that would allow an erosion or dilation to detect
the boundary can’t be constructed. This is in spite of the fact that an erosion
by the simple structuring element removes exactly these pixels!

On the other hand, this fact can be used to design a morphological boundary
detector. The boundary can be stripped away using an erosion and the eroded
image can then be subtracted from the original. This should leave only those
pixels that were eroded — that is, the boundary.

A MAX program for this is:

// Boundary extraction

image a, b, c;

begin

do a << $̋1˝;

b := {[3,3], [1,1], 1̋11111111˝}; // Simple structuring element

c := (a - (a--b));

message c;

do c >> b̋oundary.pbm˝;

end;

Figure 3.19 shows this method used to extract the boundaries of the
‘‘squares’’ image of Figure 3.18a. A larger example, that of a quarter rest
scanned from a page of sheet music, also appears in the figure.

(a) (b) (c) (d) (e)

Figure 3.19: Morphological boundary extraction. (a) The squares image. (b) The squares
image after an erosion by the simple structuring element. (c) Difference between the
squares image and the eroded image: the boundary. (d) A musical quarter rest, scanned
from a document. (e) The boundary of the quarter rest as found by this algorithm.

3.3.9 Conditional Dilation
There are occasions when it is desirable to dilate an object in such a way that
certain pixels remain immune. If, for example, an object cannot occupy certain

Chapter 3 ■ Digital Morphology 117

parts of an image then a dilation of the object must not intrude into that area.
In that case, a conditional dilation can be performed. The forbidden area of the
image is specified as a second image in which the forbidden pixels are black
(1). The notation for conditional dilation will be:

A ⊕ (Se , A′) (EQ 3.23)

where Se is the structuring element to be used in the dilation, and A’ is the
image representing the set of forbidden pixels.

One place where this is useful is in segmenting an image. Determining a
good threshold for grey-level segmentation can be difficult, as discussed later
in Chapter 3. However, sometimes two bad thresholds can be used instead of
one good one. If a very high threshold is applied to an image, only those pixels
that have a high likelihood of belonging to an object will remain. Of course, a
great many will be missed. Now a very low threshold can be applied to the
original image, giving an image that has too many object pixels, but where the
background is marked with some certainty. Then the following conditional
dilation is performed:

R = Ihigh ⊕ (simple, Ilow) (EQ 3.24)

The image R is now a segmented version of the original, and it is in some
cases a superior result than could be achieved using any single threshold
(Figure 3.20).

The conditional dilation is computed in an iterative fashion. Using the
notation of Equation 3.23, let A0 = A. Each step of the dilation is computed by:

Ai = (Ai−1 ⊕ Se) ∩ A′ (EQ 3.25)

The process continues until Ai = Ai−1, at which point Ai is the desired
dilation. A MAX program for conditional dilation is:

// Conditional dilation

image a, b, c, d;

begin

do a << $̋1˝; // Input image.

do c << $̋2˝; // Forbidden image.

b := {[3,3], [1,1], 1̋11111111˝}; // Simple structuring element.

loop

d := (a ++ b) * c;

exit when d=a;

a := d;

end;

do a >> $̋3˝;

end;

118 Chapter 3 ■ Digital Morphology

(a) (b) (c)

(d) (e)

Figure 3.20: Conditional dilation. (a) Image of a pile of keys. (b) Negative image resulting
from use of a high threshold. (c) Result of using a low threshold. (d) Conditional dilation
of (b) using the simple structuring element, conditional on (c). (e) The result after being
cleaned up — in this case, by using an opening.

Another application of conditional dilation is that of filling a region with
pixels, which is the inverse operation of boundary extraction. Given an outline
of black pixels and a pixel inside of the outline, we are to fill the region with
black pixels. In this case, the forbidden image will consist of the boundary
pixels; we want to fill the region up to the boundary, but never set a pixel that is
outside. Because the outside pixels and the inside pixels have the same value,
the boundary pixels are forbidden and the dilation continues until the inside
region is all black. Then this image and the boundary image are combined to
form the final result.

The conditional dilation is:

Fill = P ⊕ (Scross, Ac) (EQ 3.26)

where P is an image containing only the seed pixel, which is any pixel known
to be inside the region to be filled, and A is the boundary image for the region
to be filled. Scross is the cross-shaped structuring element seen in Figure 3.21b.
The same figure shows the steps in the conditional dilation that fills the same
boundary that was identified in section 3.2.8. The seed pixel used in the
example is [3,3], but any of the white pixels inside the boundary could have
been used.

Chapter 3 ■ Digital Morphology 119

(a) (b) (c)

(f) (g) (i)

(d)

(h)

(e)

Figure 3.21: Filling a region using conditional dilation. (a) The boundary of the region to
be filled. This is the boundary found in Figure 3.19. (b) The structuring element. (c) The
seed pixel, and iteration 0 of the process. (d) After iteration 1. (e) After iteration 2. (f) After
iteration 3. (g) After iteration 4. (h) After iteration 5 the dilation is complete. (i) Union of
(h) with (a) is the result.

A MAX program for region filling requires the input of the coordinates of
the seed pixel, which is the first time that integer input has been performed in
a MAX program. It is:

// Fill a region with 1 pixels - Conditional Dilation

pixel p;

int i,j;

image a, b, c, d;

begin

do a << “$1“;

message “FILL: Enter the coordinates of the seed pixel “;

do i << ““; do j << ““;

p := [i, j]; // SEED pixel.

b := {[3,3], [1,1], “010111010“};

c := !a + p;

a := ~a;

loop

d := (c ++ b) * a;

exit when d=c;

c := d;

end;

do c + ~a >> “$2“;

end;

3.3.10 Counting Regions
As a final example of the uses of morphology in binary images, it is possible to
count the number of regions in an image using morphological operators. This

120 Chapter 3 ■ Digital Morphology

method, first discussed by Levialdi, uses six different structuring elements.
The first four elements are used to erode the image, and were carefully chosen
so as not to change the connectivity of the regions being eroded. The last two
elements are used to count isolated ‘‘1’’ pixels; in MAX this is done using the
operator, and so these structuring elements will not be needed.

Figure 3.22 shows the four structuring elements, named L1 through L4. The
initial count of regions is the number of isolated pixels in the input image A,
and the image of iteration 0 is A:

count0 = #A
A0 = A

(EQ 3.27)

(a) (b) (c) (d) (e)

Figure 3.22: Counting 8-connected regions. (a)–(d) The structuring elements L1 through
L4. (e) An example image having eight regions. The algorithm counts these correctly.

The image of the next iteration is the union of the four erosions of the current
image:

An+1 = (An � L1) ∪ (An � L2) ∪ (An � L3) ∪ (An � L4) (EQ 3.28)

And the count for that iteration is the number of isolated pixels in that
image:

countn+1 = #An+1 (EQ 3.29)

The iteration stops when An becomes empty (all 0 pixels). The overall
number of regions is the sum of all the values counti. The MAX program that
does this is:

// Count 8-connected regions.

image L1, L2, L3, L4, a, b;

int count;

begin

L1 := {[2,2], [0,1], 0̋101˝};

L2 := {[2,2], [0,1], 0̋110˝};

L3 := {[2,2], [0,1], 1̋001˝};

L4 := {[2,2], [0,1], 1̋100˝};

do a << “$1“;

Chapter 3 ■ Digital Morphology 121

count := 0;

loop

count := #a + count;

b := (a--L1) + (a--L2) + (a--L3) + (a--L4);

exit when b = 0;

a := b;

end;

message N̋umber of 8 regions is ˝; message count; message;

end;

This program counts eight regions in Figure 3.22e, which is correct for
8-connected regions. It also counts two regions in Figure 3.11a, which is also
correct. The algorithm for 4-connected regions is the same but uses different
structuring elements.

3.4 Grey-Level Morphology

The use of multiple grey levels introduces an enormous complication, both
conceptually and computationally. A pixel can now have any integer value, so
the nice picture of an image being a set disappears. There is also some question
about what dilation, for example, should mean for a grey-level image. Rather
than being strictly mathematical here, we will take a more intuitive approach,
in the hope that the result will make sense.

Consider the image of a line in Figure 3.23a.

(a) (b) (c) (d)

Figure 3.23: Grey-scale dilation. (a) A bi-level image of a line. (b) Binary dilation of (a)
by simple. (c) A grey-scale image of a line; background is 0, and the line pixels have the
value 20. (d) This is what the grey line should look like after a dilation.

This is a bi-level image, and the dilation of this image by the simple
structuring element can be computed (Figure 3.23b). Now imagine that instead
of having levels 0 and 1, the pixels in the line have the value 20 and the
background is 0. What should a dilation of this new image by simple look

122 Chapter 3 ■ Digital Morphology

like? The binary dilation spreads out the line, as determined by the locations of
the ‘‘1’’ pixels, making it three pixels wide instead of only one. The grey-level
image should have a corresponding appearance after dilation, where the
difference between the foreground and background pixels should be about
the same as in the original and the line should be about three pixels wide. An
example of how the dilated grey-level line (Figure 3.23c) might appear is given
in Figure 3.23d.

This appears to be a reasonable analogue of dilation for the grey-level case,
at least for a simple image. The image in Figure 3.23d was computed from
Figure 3.23c as follows:

(A ⊕ S)[i, j] = max{A[i − r, j − c] + S[r, c]
∣∣[i − r, j − c] ∈ A, [r, c] ∈ S} (EQ 3.30)

where S is the simple structuring element and A is the grey-level image to be
dilated. This is one definition of a grey-scale dilation, and it can be computed
as follows:

1. Position the origin of the structuring element over the first pixel of the
image being dilated.

2. Compute the sum of each corresponding pair of pixel values in the
structuring element and the image.

3. Find the maximum value of all these sums, and set the corresponding
pixel in the output image to this value.

4. Repeat this process for each pixel in the image being dilated.

The values of the pixels in the structuring element are grey levels as well,
and can be negative. Because negative-valued pixels can’t be displayed there
are two possible ways to deal with negative pixels in the result: they could be
set to 0 (underflow), or the entire image could have its levels shifted so that
the smallest became 0 and the rest had the same values relative to each other
as they did before. We choose the former approach for simplicity.

Given the definition of dilation in Equation 3.30, a possible definition for
grey-scale erosion would be:

(A � S)[i, j] = min{A[i − r, j − c] − S[r, c]
∣∣[i − r, j − c] ∈ A, [r, c] ∈ S} (EQ 3.31)

This definition of erosion works because it permits the same duality between
erosion and dilation that was proved in section 3.2.3.

Figure 3.24 shows an application of grey-scale erosion and dilation to the
image of keys first seen in Figure 3.20. The structuring element was simple,
made into grey levels. While it is not immediately clear why this operation
is useful, the parallel with binary dilation and erosion is plain enough. Note,

Chapter 3 ■ Digital Morphology 123

for instance, that dilation makes the small hole in the top of each key smaller,
whereas the erosion made them larger.

(a) (b) (c)

Figure 3.24: Grey-scale erosion and dilation. (a) Original. (b) Dilated by simple. (c) Eroded
by simple.

3.4.1 Opening and Closing
Opening and closing a grey-scale image is done in the same way as before,
except that the grey-scale erosion and dilation operators are used — that is,
an opening is a grey-scale erosion followed by a grey-scale dilation using the
same structuring element, and a closing is vice versa. However, intuitively it
is more useful to use a geometric model to see what is happening.

Consider a grey-level image to be a three-dimensional surface, where the
horizontal (x) and vertical (y) axes are as before, and the depth (z) axis is given
by the grey value of the pixel. A structuring element will also be a grey-level
image, and in particular consider one that is spherical such as:

0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 2 1 1 1 0 0

0 1 1 2 2 3 2 2 1 1 0

0 1 2 3 3 4 3 3 2 1 0

0 1 2 3 5 5 5 3 2 1 0

0 2 3 4 5 6 5 4 3 2 0

0 1 2 3 5 5 5 3 2 1 0

0 1 2 3 3 4 3 3 2 1 0

0 1 1 2 2 3 2 2 1 1 0

0 0 1 1 1 2 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0

124 Chapter 3 ■ Digital Morphology

Of course, this is only half of a sphere and is only approximately spherical
because of truncation error and sampling. Nonetheless, imagine this sphere
being rolled over the underside of the surface represented by the image being
opened. Whenever the center of the sphere is directly beneath an image pixel,
the value of the opened image at that point is the highest (maximum) point
achieved by any part of the sphere. The closing would be modeled by rolling
the structuring element over the top of the surface and taking the lowest point
on the sphere at all pixels as the value of the corresponding pixel in the closed
image.

Figure 3.25 shows this process in two dimensions, as if viewing a cross
section of the image. An opening, in this case, can be seen as a smoothing
process that decreases the average level of the pixels, whereas closing appears
to increase the levels.

(a) (b)

(c) (d)

Figure 3.25: Geometric interpretation of grey-level opening and closing. (a) A ‘‘slice’’
through the image being opened, showing four positions of the structuring element. (b)
The opened slice — the highest points of the circle at all pixels. (c) Rolling the circle over
the top of the slice. (d) The closed slice — the lowest points of the circle at all pixels.
These figures are approximations.

Figure 3.26 shows grey-level opening and closing applied to the keys image
of Figure 3.24.

One interesting application of opening and closing is in the visual inspection
of objects. For example, when an object is cut or polished there can be scratches
left in the material. These become more visible if light is reflected off of the
surface at a low angle and the object is seen from the side opposite the lighting
source. Figure 3.27 shows an example of this, using a pair of disk guards from
31/2 inch floppy disks. The guard on the right (3.27b) is scored, which can be
seen clearly in the image.

Chapter 3 ■ Digital Morphology 125

(a) (b) (c) (d)

Figure 3.26: Examples of grey-level opening and closing. (a) Opened ‘‘keys’’ image, using
spherical structuring element. (b) Closed ‘‘keys’’ image using spherical structuring element.
(c) Opened using simple structuring element. (d) Closed using simple structuring element.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.27: Use of grey-level morphology for the inspection of disk guards. (a) An
acceptable disk guard. (b) A scored disk guard. (c) Image (b) after thresholding. (d)
Thresholded image used as a mask to give an image showing mainly the guard. (e) Image
(d) closed using a circle (rod). (f) Residual of images (b) and (d). (g) Thresholded version
of the residual. (h) Image obtained by ANDing image (c) and image (g), showing some
edges plus the defect in the guard. (i) Boundary of the thresholded guard image (c). (j)
All pixels in ANDed image (j) that are near a boundary have been deleted. Remaining
black pixels are potential defects. The same process applied to the ‘‘good’’ guard image
a showing (k) the ANDed image and (l) the image in (k) after removing edge pixels. No
defects are reported here.

126 Chapter 3 ■ Digital Morphology

The first step in the inspection process is to gain a good estimate of the
location of the object being inspected. This is done by thresholding the image
and then using the thresholded image as a mask: into an all-black image,
copy those pixels from the original that correspond to a white pixel in the
thresholded image (3.26d). The masked image is then closed using a circular
structuring element with grey values. The result will be to raise the grey levels
of the pixels in the defects to near that of the surrounding pixels, giving a clear
image of the guard in the sampled orientation. When the original is subtracted
from this image, the defect will stand out in contrast to the guard (3.26f)

Thresholding will increase the contrast further, and the pixels that are white
in both this image and the original thresholded image are of special interest
(3.26h). Unfortunately, some of the pixels near the edges of the object(s) have
been blurred a little, and so any pixels near the original boundary (as found by
a morphological operation as well) are deleted, giving an image showing only
potential defects as black pixels. As confirmation of this process, the image
having no defects was also processed in the same way, and it shows no black
pixels in the final image.

Many kinds of inspection tasks can be carried out in a similar way, including
the inspection of paper for dirt, glass for bubbles, and wood and plastic for
defects.

3.4.2 Smoothing
One possible smoothing operation involves a grey-level opening followed by
a closing. This will remove excessively bright and excessively dark pixels from
the image; such pixels can be the result of a noise process, but unfortunately
might also be legitimate data values. The price to be paid for noise reduction
is a general blurring of the image.

Figure 3.28a shows an image of a disk guard that has been subjected
to Gaussian (normal distribution) noise with a standard deviation of 30.
Figure 3.28c shows the result of morphological smoothing applied to this
image; initially, it is not clear which image is to be preferred. However,
the same two images after thresholding (Figures 3.28b and 3.28d) clearly
demonstrate that the smoothing process eliminates much of the problem
noise, which now shows up as a ‘‘salt and pepper’’ effect, and which would
certainly create problems in later processing.

The structuring element used to smooth the disk guard image was simple,
but the choice would depend on the type of noise being cleaned up. One
common problem is the appearance of scan lines in an image that was obtained
by photographing a television of video screen. Figure 3.29 shows an example
of this sort of structured noise. The structuring element was constructed
by looking at the original noisy image in detail; the distance between scan
lines was about nine pixels, and the grey values in the structuring element

Chapter 3 ■ Digital Morphology 127

were chosen to be the differences between the grey-level at the darkest
point of the scan line and that of each of the following eight pixels in each
column.

(a) (b)

(c) (d)

Figure 3.28: Grey-level smoothing. (a) Disk guard image subjected to Gaussian noise
having a standard deviation of 30. (b) Thresholded version of a showing salt and
pepper effect of thresholding the noise. (c) Image (a) after morphological smoothing. (d)
Smoothed image after thresholding, showing less noise in the thresholded image.

(a)

(b)

(c) (d) (e)

P2
#origin 1 5
3 8 255
0 0 0
2 2 2
7 7 7
12 12 12
14 14 14
9 9 9
9 9 9
5 5 5

Figure 3.29: Morphological smoothing used to reduced structured noise. (a) Small image
section showing scan lines. (b) Structuring element used to reduce the scan lines. (c)
Image (a) after smoothing. (d) A second example with scan lines. (e) Image (d) after
smoothing with the element in (b).

The result is surprisingly good. Figure 3.29c is the smoothed version of
3.29a, and while it is a little blurry the scan line noise has been significantly
reduced; the same can be said for Figures 3.29d and 3.29e, which are the before
and after versions of another sample taken from the same larger image.

128 Chapter 3 ■ Digital Morphology

3.4.3 Gradient

In Section 3.2.8 a method for identifying the boundaries of a bi-level object was
discussed. The basic idea was to erode an image using the simple structuring
element and then subtract the result from the original, leaving only the pixels
that were eroded. This can be done with grey-level images too. The boundary
detection operator can be expressed in the same manner as in Equation 3.14,
and results in an operation not unlike unsharp masking, in which an average of
a small (say, 3x3) region is subtracted from the original pixel at the center of
the region. This procedure has an analog in photography.

Because the contrast is not as great in a grey-level image as in a bi-level
one the results of the boundary detection are not as good. However, an
improvement can be achieved by using the formula:

G = (A ⊕ S) − (A � S) (EQ 3.32)

where S is a structuring element. Instead of subtracting the eroded image from
the original, Equation 3.32 subtracts it from a dilated image. This increases
the contrast and width of the extracted edges. Equation 3.32 is the definition
of the morphological gradient, which detects edges in a manner that is
less dependant on direction than is the usual gradient operator. Figure 3.30
shows both the boundary detection algorithm and the morphological gradient
applied to the disk guard image. In all cases, the simple structuring element
was used.

(a) (b)

(c) (d)

Figure 3.30: Morphological gradient. (a) Disk guard image. (b) Edges enhanced by the
grey-level boundary extraction method applied to grey-level images, then thresholded. (c)
The morphological gradient. (d) Image (c) after thresholding.

Chapter 3 ■ Digital Morphology 129

3.4.4 Segmentation of Textures
Closing removes dark detail, and opening joins dark regions. This suggests an
application to textures, and the identification of regions in a image based on
the textural pattern seen there. While this subject will be explored more fully
in Chapter 5, a simple example at this point will probably not detract from
later revelations.

If, for instance, one texture consists of small dark blots and another consists
of larger dark blots then closing by the size of the small blots will effectively
remove them, but will leave some remnant of the larger ones. Now an opening
by the size of the gaps between the large blots will join them into one large dark
area. The boundary between the two regions should now be easy to identify.

An example of this can be seen in Figure 3.31. The original image has two
regions filled with different textures; this image was created by a drawing
package, so the textures repeat exactly, but this is not a requirement. Closing
removes all traces of the smaller texture, and closing creates a solid black
region where the larger texture had appeared. The morphological boundary
extraction procedure can then be applied, giving a solid line along the margin
between the two textures. The line is jagged wherever the boundary cuts a
large blot in two, creating a small one.

(a) (b) (c)

(e)(d)

Figure 3.31: Texture segmentation. (a) The image to be segmented. (b) After closing by
the size of the small blots. (c) After further closing by the size of the spaces between the
large texture blots. (d) The boundary seen in (c). (e) The boundary superimposed over the
original texture image.

130 Chapter 3 ■ Digital Morphology

This method can be applied to a variety of textures, although some experi-
mentation with structuring elements may be needed to achieve good results.

3.4.5 Size Distribution of Objects
The use of morphology for segmenting regions by texture suggests another
application: the classification of objects by their size or shape. Because the use
of shape would require quite a bit of experimenting with different structuring
elements, size classification will be explored here. Quite a variety of objects
are regularly classified according to their size, from biological objects under a
microscope to eggs and apples. A ‘‘grade A large’’ egg, for example, should be
noticeably bigger than a ‘‘medium’’ egg, and it should be possible to create a
program for classifying eggs using grey-level morphology. However, because
eggs are often graded using their weight, we will examine another case close
to all of us — that of money.

As it happens, and not by accident, coins vary in size according to their
value. A dime is the smallest, and a one-dollar coin is, if you can find one, the
biggest. Figure 3.32a shows an image of a small collection of coins on a dark
background. It is a mixture of U.S. and Canadian coins, since it was easy to
obtain a Canadian one-dollar coin (called a loon), but a U.S dollar coin would
have worked as well.

(a) (b) (c)

(e) (f)(d)

Figure 3.32: Classifying coins by their size. (a) The image containing coins to be classified.
(b) After opening by a structuring element of radius 6. (c) After opening by radius 6.5. (d)
Thresholded version of (c), showing that the dimes can be removed. (e) After opening by
radius 8, showing that the pennies have been removed. (f) After opening by radius 10; the
only coin remaining is the one-dollar coin.

Chapter 3 ■ Digital Morphology 131

Because a grey-level opening will decrease the level of an object, the image
was opened with circular structuring elements of gradually increasing radius.
At some point, when the radius of the structuring element exceeds that of the
coin, the coin will be removed from the image. The radii actually used were
those from 5 to 14; opening by a circular structuring element of radius 14
actually removes all coins, leaving a dark and empty image.

The first change is at radius 6.5 (diameter 13), where the dimes are reduced
in level sufficiently that thresholding can delete them. An opening using a
radius of 8 removes the pennies, allowing them to be counted. Finally, an
opening using a radius of 10 removes the quarters, leaving only the loon.
By counting the regions that vanish after each iteration, it should be possible
to accumulate the total value of the coins in the image. In many countries
the paper money also varies in size, allowing bills to be classified by size,
as well.

3.5 Color Morphology

Color can be used in two ways. As before, we can assume that the existence
of three color components (red, green, and blue) is an extension of the idea of
a grey level, or each color can be thought of as a separate domain containing
new information. In either case, morphology is not commonly applied to color
images, possibly because the construction of the structuring elements necessary
to perform a particular task is really quite complex. Color morphology will
only be touched on here through the use of a single example.

Figure 3.33a is a grey-level version of a color image, which shows an insect
sitting on a leaf. Both the insect and the background are basically green, so
automatically locating the insect could be a little tricky. On close examination
of each of the three color basis images (red, green, and blue) it is observed that
there are slight variations in each component: the insect seems to be brighter
in the red and blue images, whereas the background is brighter in the green
image.

Closing the red and blue images should brighten the insect further, and
opening the green image should suppress the background a little. A circular
structuring element with a radius of four was used in each case. Following the
closings and opening the three component images were recombined to form a
single color image. The insect is now a bright pinkish color, and can be seen in
sharp contrast to the darker green background. Figure 3.33e is a grey version
of this color image, but the insect is still clearly present. Using this image as a
mask of the original will give an isolated picture of the insect, or at least most
of it, as seen in Figure 3.33f.

132 Chapter 3 ■ Digital Morphology

(a) (b) (c)

(e) (f)(d)

Figure 3.33: Color morphology. (a) Image of a grasshopper. (b) RED component of the
RGB color image. (c) GREEN component. (d) BLUE component. (e) Image resulting from
closing the red and blue components and opening the green part. (f) Original image
masked with the processed one, showing the insect.

3.6 Website Files

bindil.exe Binary dilation

binerode.exe Binary erosion

maxcompiler.exe MAX language compiler, command line

maxcompilerb.exe MAX language compiler, interactive

maxg.exe MAX grey-level compiler

bindil.c C source code, binary dilation

binerode.c C source code, binary erosion

grey.c Library for grey-level MAX

max.c Source code, command line MAX

maxb.c Source code, interactive MAX

maxg.c Source code, grey-level MAX

maxlib.c Library, command line MAX

Chapter 3 ■ Digital Morphology 133

maxlibb.c Library, interactive MAX

mlib.c Morphology library

max.h MAX include file

morph.h C morphology library include file.

circle4.pgm Image of a circle, radius 4

circle5.pgm Image of a circle, radius 5

circle6.pgm Image of a circle, radius 6

circle7.pgm Image of a circle, radius 7

circle8.pgm Image of a circle, radius 8

circle9.pgm Image of a circle, radius 9

circle10.pgm Image of a circle, radius 10

circle11.pgm Image of a circle, radius 11

circle12.pgm Image of a circle, radius 12

circle13.pgm Image of a circle, radius 13

circle14.pgm Image of a circle, radius 14

coin3.pgm Coin image, bright

coin5.pgm Coin image, dark

disk1.pgm Disk guard image

disk2.pgm Disk guard image, scratched

keys.pgm Image of keys on textured background

knight.pgm Image of a chess piece

noisy.pgm Disk guard image, with noise

rod.pgm Small radius grey structuring element

scans.pgm Image showing raster scan lines

simple.pgm 3x3 grey structuring element

texture.pgm two textures, grey level (Figure 3.31)

and.max MAX program, AND operation

bindil.max MAX program, binary dilation

134 Chapter 3 ■ Digital Morphology

binerode.max MAX program, binary erosion

boundary.max MAX program, boundary extraction.

close.max MAX program, closing

dil.max MAX program dilation

dilg.max MAX program, grey-level dilation

dual.max MAX demo: erosion/dilation duality

erog.max MAX, grey-level erosion

fill.max MAX: conditional dilation to do a fill

gclose.max MAX, grey-level close

gopen.max MAX, grey-level open

gradient.max MAX, gradient edge detector

mitmiss.max Hit-and-miss transform, (exercise 5.1 from Haralick
and Shapiro)

hitmiss2.max Hit-and-miss transform (exercise 5.11 from
Haralick and Shapiro)

iotest.max MAX, test of input/output

open.max MAX, opening

smooth.max MAX, smoothing

t1.max t15.max MAX test functions.

tophat.max MAX, tophat example.

3_8A.pbm Image of Figure 3.8

3-8SE1.pbm Structuring element, SE1 Figure 3.8

3_8SE2.pbm Structuring element, SE2 Figure 3.8

3_8SE3.pbm Structuring element, SE3 Figure 3.8

3_8SE4.pbm Structuring element, SE4 Figure 3.8

3_8SE5.pbm Structuring element, SE5 Figure 3.8

3_8SE6.pbm Structuring element, SE6 Figure 3.8

A1.pbm Figure 3.4

B1.pbm Figure 3.4

circ.pbm Circuit board image

circr.pbm Circuit board, reversed

Chapter 3 ■ Digital Morphology 135

countme.pbm Figure 3.22e

elise.pbm Fur Elise, music image (Figure 3.9)

elise_se.pbm Structuring element (Figure 3.9)

qrest.pbm Image of a quarter rest

simple.pbm Simple structuring element

squares.pbm Image of squares (Figure 3.11)

3.7 References

Angulo, J. and J. Serra ‘‘Automatic Analysis of DNA Microarray Images Using
Mathematical Morphology,’’ Bioinformatics 19, no. 5 (2003): 553–562.

Biomedical Imaging Group. ‘‘Imaging Web Demonstrations,’’ Ecole Poly-
technique Federale de Lausanne, http://bigwww.epfl.ch/demo/jmorpho/
index.html (accessed February 4, 2010).

Bloomberg, D. ‘‘Grayscale Morphology,’’ http://www.leptonica.com/

grayscale-morphology.html (2010).
Dougherty, E. R. An Introduction to Morphological Image Processing Bellingham:

SPIE Press, 1992.
Dougherty, E. R. and C. R. Giardina Matrix Structured Image Processing

Englewood Cliffs: Prentice Hall, 1987.
Ehrlich, R., S. J. Crabtree, S. K. Kennedy, and R. L. Cannon ‘‘Petrographic

Image Analysis, I. Analysis of Reservoir Pore Complexes.’’ Journal of Sedi-
mentary Petrology 54, no. 4, (1981): 1365–1378.

Giardina, C. R. and E. R. Dougherty, Morphological Methods in Image and Signal
Processing. Englewood Cliffs: Prentice-Hall, Inc., 1988.

Gonzalez, R. C. and R. E. Woods, Digital Image Processing. Reading:
Addison-Wesley Publishing Company, 1992.

Haralick, R. M. and L. Shapiro. Computer and Robot Vision, Vol. 1., Reading:
Addison Wesley, 1992.

Haralick, R. M., S. R. Sternberg, and X. Zhuang,. ‘‘Image Analysis Using Math-
ematical Morphology,’’ IEEE Transactions on Pattern Analysis and Machine
Intelligence 9, no. 44 (1987): 532–550.

Levialdi, S. ‘‘On Shrinking Binary Picture Patterns,’’ Communications of the
ACM 15, no. 1 (1972): 7–10.

Meyer, H. and S.Beucher. ‘‘Morphological Segmentation,’’ Journal of Visual
Communication and Image Representation 1, no. 1 (1990): 21–46.

Parker, J. R. and D. Horsley. ‘‘Grey Level Encoding of Openings and Clos-
ings,’’ paper presented at SPIE Vision Geometry II, Boston, Massachusetts,
September. 9–10, 1993.

136 Chapter 3 ■ Digital Morphology

Parker, J. R. ‘‘A High-Level Programming Language For Digital Morphology,’’
paper presented at Vision Interface ‘98, Vancouver, British Columbia, June
17–20, 1998.

Schonfeld, D. and J. Goutsias. ‘‘Optimal Morphological Pattern Restoration
From Noisy Binary Images,’’ IEEE Transactions on Pattern Analysis and
Machine Intelligence, 13, no. 1 (1991): 14–29.

Serra, J. Image Analysis and Mathematical Morphology. New York: Academic
Press, 1982.

Serra, J. Image Analysis and Mathematical Morphology, Vol. 2, New York: Aca-
demic Press, 1988.

Shih, F. Y. C. and O. R. Mitchell ‘‘Threshold Decomposition of Grey Scale
Morphology Into Binary Morphology,’’ IEEE Transactions on Pattern Analysis
and Machine Intelligence, 11, no. 1, (1989): 31–42.

Sternberg, S. R. ‘‘Grayscale Morphology,’’ Computer Vision, Graphics, and Image
Processing, 35 (1986): 333–355.

C H A P T E R

4

Grey-Level Segmentation

4.1 Basics of Grey-Level Segmentation

Grey-level segmentation, or thresholding, is a conversion between a grey-level
image and a bi-level (or monochrome, or black-and-white) image. A bi-level image
should contain all the essential information concerning the number, position,
and shape of objects while containing a lot less information. The essential
reason for classifying pixels by grey level is that pixels with similar levels in a
nearby region usually belong to the same object, and reducing the complexity
of the data simplifies many recognition and classification procedures. Thresh-
olding is almost essential before thinning, vectorization, and morphological
operations.

The most common way to convert between grey-level and bi-level images
is to select a single threshold value. All the grey levels below this value will
be classified as black (0), and those above will be white (1). The segmentation
problem becomes one of selecting the proper value for the threshold T. Since
most grey-level images possess only one byte per pixel, this means that there
are usually only 256 different possible thresholds. Picking the best one could
easily be done by eye but is less trivial to do using an algorithm.

What is being assumed here is that the pixels in an image I belong to one of
two classes based on their grey level. The first class is the collection of black
pixels, which will be given the value one, and for this class:

I(i, j) < T (EQ 4.1)

137

138 Chapter 4 ■ Grey-Level Segmentation

The other class consists of those pixels that will become white:

I(i, j) ≥ T (EQ 4.2)

This assumption is only true in some real images because of noise and
illumination effects. It is not generally true that a single threshold can be
used to segment an image into objects and background regions, but it is true
in enough useful cases to be used as an initial assumption. For example,
documents scanned on any reasonable scanner these days can be thresholded
into text and background with one threshold.

The threshold must be determined from the pixel values found in the image.
Some measurement or set of measurements are made on the image, and from
these, and from known characteristics of the image, the threshold is computed.
One simple, but not especially good, example of this is the use of the mean
grey level in the image as a threshold. This would cause about half of the
pixels to become black and about half to become white. If this is appropriate,
it is an easy computation to perform. However, few images will be half black.
The program that thresholds an image in this way appears on the website,
and is named thrmean.c. It takes two arguments: the first is the image to be
thresholded, and the second is the name of the file in to which the thresholded
image will be written.

Although fixing the percentage of black pixels at 50% is not a good idea, there
are some image types that have a relatively fixed ratio of white to black pixels;
text images are a common example. On a given page of text having known
type styles and sizes the percentage of black pixels should be approximately
constant. For example, on a sample of ten pages from this book the percentage
of black pixels varied from 8.46% to 15.67%, with the smaller percentage being
due to the existence of some equations on that page. Therefore, a threshold
that would cause about 15% of the pixels to be black could be applied to this
sort of image with the expectation of reasonable success.

An easy way to find a threshold of this sort is by using the histogram of
the grey levels in the image. A histogram in this context is a vector having the
same number of dimensions as the image does grey levels. The value assigned
to each component (or bin) in the histogram hi is the number of pixels with
the grey level i. Obviously, the sum of all the components in the histogram
equals the number of pixels. Given a histogram and the percentage of black
pixels desired, we can determine the number of black pixels by multiplying
the percentage by the total number of pixels. Then simply count the pixels in
consecutive histogram bins, starting at bin 0, until the count is greater than or
equal to the desired number of black pixels. The threshold is the grey level
associated with last bin counted. This method appears on the website as the
program thrpct.c; the program asks for the percentage of black pixels, where

Chapter 4 ■ Grey-Level Segmentation 139

50 would be 50% (as opposed to 0.5, which would be 0.5%). This method is
quite old, and is sometimes called the p-tile method.

Using the histogram to select a threshold is a very common theme in
thresholding. One observation frequently made is that when a threshold is
obvious, it occurs at the low point between two peaks in the histogram. If the
histogram has two peaks, then this selection for the threshold would appear to
be a good one. The problem of selecting a threshold automatically now consists
of two steps: locating the two peaks, and finding the low point between them.

Finding the first peak in the histogram is simple: it is the bin having the
largest value. However, the second largest value is probably in the bin right
next to the largest, rather than being the second peak. Because of this, locating
the second peak is harder than it appears at first. A simple trick that frequently
works well enough is to look for the second peak by multiplying the histogram
values by the square of the distance from the first peak. This gives preference
to peaks that are not close to the maximum. So, if the largest peak is at level j
in the histogram, select the second peak as:

max
{
((k − j)2 h[k])|(0 ≤ k ≤ 255)

}
(EQ 4.3)

where h is the histogram, and there are 256 grey levels, 0..255. This method is
implemented by the program called twopeaks.c.

A better way to identify the peaks in the histogram is to observe that they
result from many observations of grey levels that should be approximately
the same except for small disturbances (noise). If the noise is presumed to
be normally distributed, the peaks in the histogram could be approximated
by Gaussian curves. Gaussians could be fit to the histogram, and the largest
two used as the major peaks, the threshold being between them. This is an
expensive proposition, with no promise of superior performance; we don’t
know how many Gaussians there are really, how near the means are to each
other, or their standard deviations (still, see Section 4.2.1).

4.1.1 Using Edge Pixels
An edge pixel must be near to the boundary between an object and the
background, or between two objects; that is why it is an edge pixel. As a result,
the levels of the edge pixels are likely to be more consistent. Because they
will sometimes be inside the object and sometimes be a little outside due to
sampling concerns, the histogram of the levels of the edge pixels will be more
regular than the overall histogram.

This idea was used to produce a thresholding method based on the digital
Laplacian, which is a non-directional edge-detection operator [Weszka, 1974].
The threshold is found by first computing the Laplacian of the input image.

140 Chapter 4 ■ Grey-Level Segmentation

There are many ways to do this, but a simple one is to convolve the image
with the mask:

0 1 0
0 −4 1
0 1 0

Now a histogram of the original image is found considering only those pixels
having large Laplacians; those in the 85th percentile and above will do nicely.
Those pixels having a Laplacian greater than 85% of their peers will have their
grey level appear in the histogram, whereas all other pixels will not. Now the
threshold is selected using the histogram thus computed.

Using a better approximation to the Laplacian should give better results,
but in many cases this simple procedure will show an improvement over the
previous methods. The C program on the website that computes a threshold
using this method is called thrlap.c, and requires that the user enter the
percentage value used to select the Laplacian values.

4.1.2 Iterative Selection
Iterative selection is a process in which an initial guess at a threshold is refined
by consecutive passes through the image [Ridler, 1978]. It does not use the his-
togram directly, but instead thresholds the image into object and background
classes repeatedly, using the levels in each class to improve the threshold.

The initial guess at the threshold is simply the mean grey level. This
threshold is then used to collect statistics on the black and white regions
obtained; the mean grey level for all pixels below the threshold is found (i.e.,
the black pixels) and called tb, and the mean level of the pixels greater than or
equal to the initial threshold (the white pixels) is called to. Now a new estimate
of the threshold is computed as (tb + to)/2, or the average of the mean levels
in each pixel class, and the process is repeated using this threshold. When no
change in threshold is found in two consecutive passes through the image, the
process is stopped.

This is designed to work well in a hardware implementation, in which
the initial estimate of a threshold assumes that the four corners of the image
correspond to background regions and the rest of the image is used as an
estimate of the object grey levels. However, in a software implementation the
same threshold can be computed using the histogram rather than scanning
the entire image during each iteration. This should be faster, since the his-
togram is a one-dimensional array of a fixed small size.

Chapter 4 ■ Grey-Level Segmentation 141

Starting with the initial estimate of the threshold T0, the kth estimate of the
threshold is [Thrussel, 1979]:

Tk =

T k − 1∑
i = 0

i · h[i]

2
Tk − 1∑
i = 0

h[i]

+

N∑
j = Tk−1 + 1

j · h[j]

2
N∑

j = Tk−1 + 1
h[j]

(EQ 4.4)

where h is the histogram of the grey levels in the image. Again, when
Tk = Tk+1 then Tk is the proper threshold. This is the actual method used in
the C code for the program thris.c, which implements the iterative selection
algorithm.

4.1.3 The Method of Grey-Level Histograms
The thresholding methods based on selecting the low point between two
histogram peaks use the concept that object pixels and background pixels have
different mean levels, and are random numbers drawn from one of two normal
distributions. These distributions also have their own standard deviations and
variances, where variance is the square of the standard deviation.

If there are two groups of pixels in the image, as suggested, then it is a
simple matter to compute the overall, or total, variance of the grey level values
in the image, denoted by σ t

2. For any given threshold t, it is also possible to
separately compute the variance of the object pixels and of the background
pixels; these represent the within-class variance values, denoted by σ w

2. Finally,
the variation of the mean values for each class from the overall mean of all
pixels defines a between-classes variance, which will be denoted by σ b

2 This is
the beginning of a method in statistics called analysis of variance, but we will
not go too much further with it here. The important issue is that an optimal
(in some respects) threshold can be found by minimizing the ratio of the
between-class variance to the total variance [Otsu, 1979]; that is,

η(t) = σ 2
b

σ 2
t

(EQ 4.5)

defines the needed ratio, and the value of t that gives the smallest value for
h is the best threshold. Since σ t

2 is the overall variance it is easy to calculate
from the image, as is the overall mean µT. The between class variance is
calculated by:

σ 2
b = ω0ω1(µ0µ1)2 (EQ 4.6)

142 Chapter 4 ■ Grey-Level Segmentation

where:

ω0 =
t∑

i = 0

pi ω1 = 1 − ω0 (EQ 4.7)

and pi is the probability of grey level i, or the histogram value at i divided by
the total number of pixels. Also,

µ0 = µt

ω0
µ1 = µT − µt

1 − ω0
µt =

t∑
i = 0

i · pi (EQ 4.8)

All these values are quite easy to calculate from the histogram h of the
image. Then η(t) is computed for all possible values of t, and the t that gives
the smallest value of η(t) is the optimal threshold.

There is a program called thrglh.c on the website that thresholds an image
using this method. It is run in exactly the same was as thris. A recent
development is a fast version of this algorithm that gives the same results
[Dong 2008].

4.1.4 Using Entropy
Entropy is a measure of information content, or how organized a system is.
In information theory terms, assume that there are n possible symbols x (e.g.,
letters or digits) and that symbol i will occur with probability p(xi). Then the
entropy associated with the source of the symbols X is

H(X) = −
n∑

i = 1

p(xi) log(p(xi)) (EQ 4.9)

where entropy is measured in bits/symbol if the base of the logarithm is 2.
The term ‘‘symbol’’ is really a more concrete term that, in this context, means

state, and a system has a probability of being in a particular state with a par-
ticular probability. If the system has only one state and is always in that state,
then the entropy is −1.0 ∗ log(1.0) = 0. If the system is a coin, then there are
two states (= heads, tails) and the entropy is −0.5 log(0.5) − 0.5 log(0.5) =
2 ∗ 0.5 ∗ 0.301 = 0.3. It’s more interesting if a logarithm base 2 is used:
−0.5 log2(1/2) − 0.5 log2(1/2) = − log2(1/2) = 1. Units in this instance are bits,
and a coin toss represents one bit of information. It can be seen that entropy is
smaller when the system is more organized and larger when it is more random.

An image can be thought of as a source of symbols, or grey levels. The
entropy associated with the black pixels, having been thresholded using some
threshold value t, is as follows [Pun, 1980]:

Hb = −
t∑

i = 0

pi log(pi) (EQ 4.10)

Chapter 4 ■ Grey-Level Segmentation 143

where pi is the probability of grey level i. Similarly, the entropy of the white
pixels is

Hw = −
255∑

i = t + 1

pi log(pi) (EQ 4.11)

for an image with levels 0 . . . 255. The pi values are really just scaled histogram
bin values, the number of pixels in the image having a value i divided by the
total number of pixels. The suggested algorithm attempts to find the threshold t
that maximizes H = Hb + Hw, which Pun shows to be the same as maximizing:

f (t) = Ht

HT

log Pt

log(max{p0, p1, . . . pt})
+
[

1 − Ht

HT

]
log(1 − Pt)

log(max{pt + 1, pt + 2, . . . p255}) (EQ 4.12)

where

Ht = −
t∑

i = 0

pi log pi (EQ 4.13)

is the entropy of the black pixels as thresholded by t,

HT = −
255∑
i = 0

pi log pi (EQ 4.14)

is the total entropy, and

Pt =
t∑

i = 0

pi (EQ 4.15)

is the cumulative probability up to the grey level t, or the probability that a
given pixel will have a value less than or equal to t. These three factors can be
computed from the grey-level histogram, and EQ 4 .14 does not depend on t.

The threshold is found by computing H for all possible values of t, and
selecting the t at the maximum point of H. The program thrpun.c thresholds
an image using this algorithm.

In a variation on this theme, Kapur [1985] attempts to define an object
probability distribution A and a background distribution B as follows:

A :
p0

Pt
,

p1

Pt
, . . . ,

pt

Pt

B :
pt+1

1 − Pt
,

pt+1

1 − Pt
, . . . ,

p255

1 − Pt
(EQ 4.16)

144 Chapter 4 ■ Grey-Level Segmentation

Now the entropy of the black and white pixels is computed in a similar way
to Equations 4.10 and 4.11, but using these new distributions:

Hb = −
t∑

i = 0

pi

Pt
log

(
pi

Pt

)
(EQ 4.17)

Hw = −
255∑

i = t + 1

pi

1 − Pt
log

(
pi

1 − Pt

)
(EQ 4.18)

The optimal threshold is the value of t that maximizes H = Hb(t) + Hw(t).
Once again, all thresholds between 0 and 255 are tried, and the one that gives
the largest value of H is chosen. The C program thrkapur.c implements this
algorithm.

Still another variation proposes to divide the grey levels into two parts so
as to minimize the interdependence between them [Johannsen, 1982]. Without
pursing this in too much detail, the method amounts to minimizing Sb(t) +
Sw(t) where:

Sb(t) = log

(
t∑

i = 0

pi

)
+ 1

t∑
i = 0

pi

[
E(pt) + E

(
t−1∑
i = 0

pi

)]
(EQ 4.19)

and

Sw(t) = log

(
255∑
i = t

pi

)
+ 1

255∑
i = t

pi

[
E(pt) + E

(
255∑

i = t + 1

pi

)]
(EQ 4.20)

and where again E(x) = −x log(x) is the entropy function. When implementing
this algorithm, great care must be taken not to evaluate Sb(t) and Sw(t) for
values of t, where pt = 0. As a detailed example of an entropy-based method,
the C code for the function thrjoh.c is given in Figure 4.1.

This is the function that does the bulk of the work for the program named
thrjoh.c in implementing the algorithm outlined above, and contains code
common to most of the entropy methods.

Most recently, researchers [Portes de Albuquerque, 2004] modify Kapur’s
method by using Tsallis entropy [Tsallis, 2001]. It introduces another parame-
ter q (the degree of nonextensivity) and different versions of the expressions of
Equations 4.17, 4.18, and, especially, 4.19. However, the basic idea is the same:
to maximize the (Tsallis) entropy between the foreground and background.
This is an interesting idea, but has not really yielded significantly better results
than other techniques.

Chapter 4 ■ Grey-Level Segmentation 145

void thr_joh (IMAGE im)

{

int i, j, t= -1, start, end;

float Sb, Sw, Pt[256], hist[256], F[256], Pq[256];

unsigned char *p;

/* Histogram */

histogram (im, hist);

/* Compute the factors */

Pt[0] = hist[0]; Pq[0] = 1.0 - Pt[0];

for (i=1; i<256; i++)

{

Pt[i] = Pt[i-1] + hist[i];

Pq[i] = 1.0 - Pt[i-1];

}

start = 0; while (hist[start++] <= 0.0) ;

end = 255; while (hist[end--] <= 0.0) ;

/* Calculate the function to be minimized at all levels */

for (i=start; i<=end; i++)

{

if (hist[i] <= 0.0) continue;

Sb = (float)log((double)Pt[i]) + (1.0/Pt[i])*

(entropy(hist[i])+entropy(Pt[i-1]));

Sw = (float)log ((double)Pq[i]) + (1.0/Pq[i])*

(entropy(hist[i]) + entropy(Pq[i+1]));

F[i] = Sb+Sw;

if (t<0) t = i;

else if (F[i] < F[t]) t = i;

}

/* Threshold */

p = im->data[0];

for (i=0; i<im->info->nr*im->info->nc; i++)

if (*p < t) *p++ = 0;

else*p++ = 255;

}

void histogram (IMAGE im, float *hist)

{

int i;

unsigned char *p;

for (i=0; i<256; i++) hist[i] = 0.0;

p = im->data[0];

for (i=0; i<im->info->nc*im->info->nr; i++) hist[(*p++)] += 1.0;

for (i=0; i<256; i++) hist[i] /= (float)im->info->nc*im->info->nr;

}

float entropy (float h)

{

if (h > 0.0) return (-h * (float)log((double)(h)));

else return 0.0;

}

Figure 4.1: Source code for thrjoh.c, an entropy-based thresholding algorithm.

146 Chapter 4 ■ Grey-Level Segmentation

4.1.5 Fuzzy Sets
In standard set theory, an element either belongs to a set or it does not. In
a fuzzy set, an element x belongs to a set S to a particular degree ux. When
thresholding an image, we are attempting to classify pixels as belonging either
to the set of background pixels or to the set of object pixels. The applicability
of fuzzy sets to this problem seems apparent: some pixels can belong to the
foreground and the background to a particular degree.

Fuzzy sets are a greatly misunderstood construct. In traditional set theory,
membership is a simple true or false. In fuzzy sets there exists a membership
function that gives the degree to which something belongs to the set. This
corresponds to reality better; consider the set of young people, a standard
example in fuzzy set theory. The membership function µ(age) indicates set
membership as a function of age, and is largely a matter of opinion, but let’s
say that YOUNG is defined as:

µy (age) = 1 if age < 20

µy (age) = −age/20 + 2 for ages between 20 and 40, and

µy (age) = 0 for age > 40

Someone 30 years old has µy (30) = 0.5. Now define the set OLD as:

µo (age) = 1 if age < 30

µo (age) = age/30 − 1 for ages between 30 and 60, and

µo (age) = 0 for age > 60

For a 35-year-old person, their degree of membership in the set YOUNG
is −35/20 + 2 = 0.25 and their degree of membership in OLD is 35/30 −
1 = 0.166. The same individual is a member of YOUNG and OLD to a
certain degree. The membership is not a probability, though, even though
it is a number between 0 and 1. Think of a car in a parking lot, straddling
the yellow line making two stalls. Does this car have a 50% probability of
being in stall 12, or is it parked in stall 12 (and 13) to the 0.5 degree (that is,
halfway)?

There have been a number of attempts to use fuzzy sets in image segmen-
tation, but the one to be described here uses a measure of fuzziness, which is
a distance between the original grey-level image and the thresholded image
[Huang, 1995]. By minimizing the fuzziness, the most accurate thresholded
version of the image should be produced.

The first step is to determine the membership function, or the probability
associated with the classification of each pixel as object or background. If the
average grey level of the background is µ0 and that of the objects is µ1. The

Chapter 4 ■ Grey-Level Segmentation 147

smaller the difference between the level of any pixel x and the appropriate
mean for its class, the greater will be the value of the membership function
ux(x). A good membership function is:

ux(x) =

1
1 + |x − µ0|/C

if x ≤ t

1
1 + |x − µ1|/C

if x > t
(EQ 4.21)

for a given threshold t. C is a constant, and is the difference between the maxi-
mum and minimum grey levels. Any pixel x will be in either the background
set or the object set depending on the relationship between the grey level of
the pixel and the threshold t. For an object pixel (x > t), the degree to which it
belongs to the object set is given by ux(x), which should be a value between 1/2

and 1.
Given the membership function, how is the degree of fuzziness of the

segmentation measured for a given t? For example, if the original image is
already bi-level then a threshold of 0 should give exactly the same image back,
and the fuzziness here should be zero. The maximum possible value of the
fuzziness measure should probably be one. One way to measure fuzziness
is based on the entropy of a fuzzy set, which is calculated using Shannon’s
function, rather than as we have been doing. Shannon’s function is

Hf (x) = −x log(x) − (1 − x) log(1 − x) (EQ 4.22)

and so the entropy of the entire fuzzy set (the image) would be

E(t) = 1
MN

∑
g

Hf (µx(g))h(g) (EQ 4.23)

for all grey levels g, where N and M are the number of rows and columns, and
h is the grey-level histogram. This is a function of t because ux is. Where E(t) is
a minimum t is the appropriate threshold that minimizes fuzziness.

Another measure of fuzziness is based on the idea that for a normal set A
there are no elements in common between A and its complement. For a fuzzy
set, on the other hand, each element may belong to A and to Ac with certain
probabilities. The degree to which A and its complement are indistinct is a
measure of how fuzzy A is [Yager, 1979]. This can be calculated using the
expression

Dp(t) =

∑

g

|µx(g) − µ x (g)|p

1/p

(EQ 4.24)

for levels g, where p is an integer and µx’(g) = 1 – µx(g).

148 Chapter 4 ■ Grey-Level Segmentation

The value of p used defines a distance measure; p = 2 is used in the software
here, which corresponds to a Euclidean distance.

Whichever fuzziness measure is used, an estimate for both m0 and m1 is
needed. For a given threshold t we have:

µ0(t) =

t∑
g = 0

g · h(g)

t∑
g = 0

h(g)
(EQ 4.25)

as the estimate of the background mean, and

µ1(t) =

254∑
g = t + 1

g · h(g)

254∑
g = t + 1

h(g)
(EQ 4.26)

as the estimate of the object mean, where both values depend on the threshold.
Now everything needed to minimize the fuzziness is known; simply try

all possible thresholds t and select the one that yields the minimum value of
the fuzziness measure. The C program thrfuz.c implements both measures
described; user must enter a code for the entropy calculation to be performed:
1 for standard entropy and 2 for Yager entropy (Equation 4.24).

4.1.6 Minimum Error Thresholding
The histogram of the image can be thought of as a measured probability density
function of the two distributions (object pixels and background pixels). These
are, as has been discussed, usually thought of as normal distributions, so the
histogram is an approximation to

p(g) = 1

σ1

√
2π

e
−
(

(g − µ1)2

2σ1
2

)
+ 1

σ2

√
2π

e
−
(

(g −µ2)2

2σ2
2

)
(EQ 4.27)

where σ 1 and µ1 are the standard deviation and mean of one of the classes,
and σ 2 and µ2 are the standard deviation and mean of the other. After taking
the log of both sides and rearranging, we get a quadratic equation that could
be solved for g:

(g − µ1)2

σ 2
1

+ log σ1 − 2log P1 = (g − µ2)2

σ 2
2

+ log σ2 − 2log P2 (EQ 4.28)

However, the values of σ , µ, and P are not known, and they can be estimated
only with some difficulty. Instead of that, Kittler and Illingworth [Kittler, 1986]
created a new criterion function to be minimized:

Chapter 4 ■ Grey-Level Segmentation 149

J(t) = 1 + 2(P1(t) log σ1(t) + P2(t) log σ2(t))

− 2(P1(t) log P1(t) + P2(t) log P2(t)) (EQ 4.29)

using formulas that should be starting to look familiar:

P1(t) =
t∑

g = 0

h(g) P2(t) =
255∑

g = t + 1

h(g) (EQ 4.30)

µ1(t) =

t∑
g = 0

g · h(g)

P1(t)
µ2(t) =

255∑
g = t + 1

g · h(g)

P2(t)
(EQ 4.31)

σ 2
1 (t) =

t∑
g = 0

h(g)(g − µ1(t))2

P1(t)
(EQ 4.32)

σ 2
2 (t) =

255∑
g = t + 1

h(g)(g − µ2(t))2

P2(t)
(EQ 4.33)

The value of t that minimizes J(t) is the best threshold. This is often referred to
as minimum error thresholding and is implemented by the program thrme.c on
the website.

4.1.7 Sample Results From Single Threshold Selection
To this point, 13 different threshold selection methods have been discussed,
and it would be interesting to see how they compare to one another by
applying them to a set of sample images. Figures 4.2–4.4 show such a
set, each having different properties that may present problems. Figure 4.2
is an example of an outdoor scene, which will be re-examined later
(Chapter 5) when discussing texture segmentation; this will be called the
sky image.

Figure 4.3 illustrates a typical problem for grey-level segmentation: an image
containing printed text. This will be called the pascal image.

Finally, Figure 4.4 is a human face, which presents difficulties for many
segmentation algorithms; it will be called the face image.

Any discussion of the quality of the results would be subjective. Indeed, if
a perfect quality measure were available, it could be used as a thresholding
algorithm. Still, it seems clear that the different methods perform well on
different kinds of image. The minimum error method seems to deal best with
the sky image, Otsu’s Grey Level Histogram (GLH) algorithm with the pascal
image, and Pun entropy with the face image.

150 Chapter 4 ■ Grey-Level Segmentation

Original
Image

Mean value

T = 122

T = 117 T = 122 T = 95 T = 117

T = 107 T = 117 T = 141

T = 32

T = 54 T = 54 T = 115

Two peaks Edge pixels
(10%)

Iterative
Selection

GLH Pun Kapur Johannsen

Fuzz (entropy) Fuzz (Yager) Min. Error

10 percent

Figure 4.2: All 13 thresholding methods studied so far, applied to the sky image.

Original Mean value = 175 Two peaks = 132 Edge
pixels = 156

Iterative
Selection = 121

GLH = 122 Pun = 184 Kapur = 153

Fuzz
(entropy) = 131

Fuzz
(Yager) = 124

Min. Error = 166

Johannsen = 132 10 percent = 147

Figure 4.3: Sample results from the single threshold selection methods, using a
hand-printed text image (pascal).

Chapter 4 ■ Grey-Level Segmentation 151

Original Mean = 119 Two peaks = 41 Edge
pixels = 46

Iterative
Selection = 100

GLH = 103 Pun = 142 Kapur = 185 Johannsen = 176 10 percent = 40

Fuzz
(entropy) = 87

Fuzz
(Yager) = 111

Min. Error = 54

Figure 4.4: Sample results from the single threshold selection methods, using an image
of a human face (face). This is the most difficult of the three images to threshold.

4.2 The Use of Regional Thresholds

So far in this discussion it has been presumed that the object pixels and the
background pixels have non-overlapping grey levels. This need not be true,
and leads to the conclusion that the selection of a single threshold for an image
is not possible in all cases, perhaps not even in most. However, all that is
needed is for the two classes of pixel not to overlap over each of a set of regions
that collectively form the image. It may be that, for example, there is no single
pixel that can threshold the entire image, but that there are four thresholds
each of which can threshold a quarter of the image. This situation still results
in a segmentation of the whole image but is simply more difficult to calculate.

The first issue with regional thresholds is the determination of how many
regions are needed, and what the sizes of these regions are. Once that is done,
it may be that any of the previously discussed algorithms can be used to give a
threshold for each region, and the thresholding will simply be done in pieces.
The number of regions can simply be dictated, by deciding to break up the
original image to M sub-images.

152 Chapter 4 ■ Grey-Level Segmentation

As an illustration, let’s do an experiment. An image will be thresholded
using iterative selection on overlapping 21x21 regions centered on each pixel.
The threshold found in each region will be used only as a threshold on the
pixel at the center, giving one threshold per pixel. There will, of course, be
a 10-pixel wide margin around the outside of the image that does not get
thresholded, but that will be fixed later. What happens? The results for the sky
image and the pascal image appear in Figure 4.5. (These images were created
by the program thrmulis.c.)

(a) (b)

Figure 4.5: Using iterative selection to find a threshold for each pixel in the image. In all
cases a square region of 21x21 pixels was used. (a) The sky image thresholded. (b) The
pascal image thresholded. The method tries too hard to find object pixels, resulting in
noise pixels being promoted to object pixels.

This is less than could be hoped for, but there is a simple explanation.
The thresholding algorithm applied to each region attempts to divide the
pixels into two groups, object and background, even when the region does not
contain samples of both classes. When the region consists only of background
pixels, the algorithm tries too hard, and creates two classes where only one
exists. It is therefore necessary, when using regional methods, to make sure
that either each region contains a sample of both object and background pixels,
or that no thresholding is attempted when only one pixel class exists.

4.2.1 Chow and Kaneko
This method divides the image into 49 overlapping regions, each being 64x64
pixels [Chow, 1972]; this division is for 256x256 pixel images, and is not carved
into stone. The histogram is found for each region, and a test of bimodality is
performed. A bi-modal histogram is presumed to have two classes of pixels
represented, and a threshold will therefore exist between the two peaks. Each
bi-modal histogram then has a pair of Gaussian curves fit to it, using a least
squares method. This should more precisely locate the two peaks, allowing an
‘‘optimal’’ threshold to be selected for each region.

The thresholds for regions not having bi-modal histograms are then inter-
polated from those regions that do, the assumption being that the region

Chapter 4 ■ Grey-Level Segmentation 153

with the interpolated threshold is probably all background or all object, and
a neighboring threshold will suffice. Finally, a pixel-by-pixel interpolation of
the threshold values is done, giving every pixel in the image its own thresh-
old. This algorithm historically forms the foundation of regional thresholding
methods, and is frequently cited in the literature. Although it was originally
devised for the enhancement of boundaries in heart X-rays (cineangiograms,
actually), it is a very nice example of how to approach a vision problem.

A bimodal histogram can be expressed as the sum of two Gaussians, as
expressed mathematically in Equation 4.27. We want to obtain the values for
the mean, standard deviation, and scaling factor for each of the two Gaussians,
and can do this using a least squares approach. First, the histogram for the
current window (a size of 16x16 was used) is found, and is smoothed in
the following way:

Fs(i) = F(i − 2) + 2F(i − 1) + 3F(i) + 2F(i + 1) + F(i + 2)
9

(EQ 4.34)

The smoothed version is less susceptible to noise than is the original.
Now the histogram is divided into two parts at the lowest point in the
smoothed version, which will be at index v. This assumption is that one of
the Gaussians is to the left of this point, and the other is to the right of it. The
initial parameters of each one can be estimated from the relevant portions of
the histograms. The estimates are:

N1 =
v∑

i = 0

F(i) N2 =
255∑

i = v + 1

F(i) (EQ 4.35)

µ1 =
v∑

i = 0

F(i) · i µ2 =
255∑

i = v + 1

F(i) · i (EQ 4.36)

σ1 =
√√√√ 1

N1

v∑
i = 0

F(i) · (i − µ1)2 (EQ 4.37)

σ2 =
√√√√ 1

N2

255∑
i = v + 1

F(i) · (i − µ2)2 (EQ 4.38)

P1 = σ1N1

v∑
i = 0

e
−
(

(i−µ1)2

2σ2
1

) (EQ 4.39)

P2 = σ2N2

v∑
i = 0

e
−
(

(i−µ2)2

2σ2
2

) (EQ 4.40)

154 Chapter 4 ■ Grey-Level Segmentation

This is a slightly different form of a Gaussian; the leftmost Gaussian is
defined as:

G1(x) = P1

σ1
e
−
(

(x−µ1)2

2σ2
1

)
(EQ 4.41)

and the rightmost is the same but with subscript 2.
With these estimates used as our initial guess for the parameters of the two

Gaussians, the sum of the squared residuals is minimized:

R(P1, µ1, σ1, P2, µ2, σ2) =
255∑
i = 0

(G1(i) + G2(i) − F(i))2 (EQ 4.42)

The original program from 1972 was implemented using the FORTRAN
language, and this program is no longer available. However, the procedure
powell from the book Numerical Recipes in C [Press, 1988] seems to do an
acceptable job in most cases. This procedure will minimize R by refining the
estimates of the parameters.

When the fit is complete, the bi-modality of the two Gaussians is evaluated
using four criteria. First, the means must differ by more than four grey levels
(µ2 − µ1 > 4); the ratio of the standard deviations must be small, reflecting
the fact that they are the same size within reasonable bounds (0.05 < σ 1/σ 2 <

2.0); and the ratio of the valley to peak must also be within a reasonable range.
This last value is the smallest histogram value found between the two means
divided by the smaller of the two values F(µ1) and F(µ2); its value should be
less than 0.8.

If the histogram for the current window is not bi-modal, no threshold is
selected for it. If it is bimodal, the point of intersection between the two
Gaussians is selected as the threshold. This point is found by solving the
quadratic equation:(

1
σ 2

2

+ 1
σ 2

2

)
t2 + 2

(
µ2

σ 2
2

− µ1

σ 2
1

)
t + 2log

(
P2σ1

P1σ2

)
= 0 (EQ 4.43)

When two solutions exist, use the value of t that is between µ1 and µ2. In
this way, a threshold is chosen (or not) for each window. For each window
not having a threshold, one is estimated from its neighbors, using a linear
interpolation or simple weighting scheme. These are then smoothed by local
weighted averaging using the following convolution-type mask:

1√
2

1
1√
2

1 2 1
1√
2

1
1√
2

Chapter 4 ■ Grey-Level Segmentation 155

Finally, each pixel in the image is assigned a threshold estimated from the
threshold of the surrounding four windows by linear interpolation. Figure 4.6
illustrates the situation for a pixel in between windows A, B, C, and D.

A

a

b

c d

B

C D

P

Figure 4.6: Linear interpolation of individual pixel thresholds. A, B, C, and D are the
centers of adjacent windows, having thresholds Ta, Tb, Tc, and Td. The distance a is the
distance of the pixel P vertically to the point A; b is the distance from P vertically to C; c is
the distance horizontally to C; and d is the distance horizontally to D.

For this case, the threshold at the point P would be

T = bdTA + bcTB + adTC + acTD

(a + b)(c + d)
(EQ 4.44)

The thresholds for pixels not having enough valid neighboring windows to
perform an interpolation are simply taken from the nearest window having a
threshold. This applies to pixels on the boundary of the image as well.

The algorithm outlined above is not exactly the Chow-Kaneko method, but
is probably fairly close. It could be applied to the three test images of Figures
4.2–4.4, but this would not properly show off the advantages of multiple
region thresholding. Instead, an intensity gradient will be imposed on the
images, as shown in Figure 4.7.

A linear gradient, a Gaussian spot, and a sine-wave were super-imposed
over the existing images. The results, if thresholded using the best algorithm
previously found for that image, illustrate the problem resulting from using a
single threshold.

Selecting one threshold per pixel or per region always takes longer than
selecting a single threshold, sometimes substantially longer. Whether the
results justify the extra time is something that must be judged on a case-by-case
basis.

156 Chapter 4 ■ Grey-Level Segmentation

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.7: Badly illuminated images threshold by Chow-Kaneko and by standard meth-
ods. (a–c) The original images with imposed illumination (sky, Gaussian; pascal, sine
wave; face, linear). (d–f) The badly illuminated images thresholded using the best
thresholding method from the previous trial. (g–i) The same images thresholded by
Chow-Kaneko.

4.2.2 Modeling Illumination Using Edges
If the illumination falling on an object is known, then the task of segmenting
the pixels belonging to the object is much simpler. This is because the intensity
of a pixel in an image is proportional to the product of the illumination at
that point and the color (reflectivity) of the object there. If the illumination
gradient were known, it could be factored out leaving a relatively simply task
of thresholding based only on the nature of the objects.

Chapter 4 ■ Grey-Level Segmentation 157

Figure 4.8 shows some images that have illumination problems, making
them difficult to threshold.

(a) (b) (c)

Figure 4.8: Difficult images to threshold, either due to illumination gradients or low
contrast. (a) The pascal image with a linear illumination gradient. (b) The face image with
a Gaussian gradient. (c) An X-ray image having generally low contrast, which is typical of
X-rays. Used with permission of Big Hill Veterinary Clinic, Cochrane, Alberta.

A single threshold will certainly not do the job for any of these images, and
small regions will result in artifacts at the region boundaries. One threshold
per pixel is best here, since any larger region may be subject to distortion
through illumination effects. The method will decide what these threshold
values are to be based on local properties of the image, specifically based on the
levels of known object pixels. The confidence in the local threshold decreases
with the distance from a known object pixel.

One approach to thresholding is based on the principle that objects in an
image provide the high spatial frequency component and illumination consists
mainly of lower spatial frequencies. These two were multiplied together to
produce the image. Another way to look at this is to say that the objects in
an image will produce small regions with a relatively large intensity gradient,
those being at the boundaries of objects, whereas other areas ought to have
a relatively small gradient; this fact is used in many edge enhancement
algorithms. In this way a sample of the object pixels in an image can be found
by looking for regions of high gradient and assuming that these pixels belong
to an object that would appear as distinct in a thresholded picture.

This thresholding method involves first locating ‘‘objects’’ in an image by
using the Shen-Castan edge detector (see Section 2.5) to locate pixels that
belong to boundaries of objects. This edge detector has good localization
properties, and a pixel that has been determined to be on an edge will be
assumed to be a part of an object. The grey levels at edge pixels should
be indicative of the levels elsewhere in object regions. A surface is produced
that fits the levels at the edges, and this surface is presumed to give reasonable
estimates of likely grey levels at object pixels that do not lie on an edge. Pixels

158 Chapter 4 ■ Grey-Level Segmentation

significantly above this surface will be assumed to belong to the background,
and those at or below it will belong to the object. This method is capable
of thresholding images that have been produced in the context of variable
illumination, and is called edge-level thresholding (ELT).

The method used to fit a surface to the edge points is a moving least-
squares (MLS) scheme [Salkauskas, 1981]. This involves solving a weighted
least-squares problem at each point in the plane. That is, if

J(x, y) =
N∑

i = 1

wi(x, y)(I(xi, yi) − S(xi, yi)) (EQ 4.45)

where N is the number of data points which are given by I(xi, yi), s(x, y) =
ax + by + c and wi(x, y) are weights, then we find values for a, b, and c so
that J(x,y) is minimized at each point (x,y) in the plane. The weights depend
on the evaluation points, and hence the requirement that we perform this
minimization at each point.

The weight function wi(x, y) has several important properties. It essentially
weights the data point (xi, yi) inversely according to its distance from the
current evaluation point (x,y). If the data is further than some specified dis-
tance h from (x,y), we assume that it should have no bearing whatsoever on
the height of the surface at that point, and so the weight is zero. Another
parameter for the weight function, d, determines the fidelity of the surface to
the data. When d is zero, the weight is essentially infinite when the evaluation
point is also a data point; the result is a surface that actually passes through
all the data, and this can lead to extreme fluctuations. As d increases towards 1,
the fidelity increases and the surface relaxes, tending to average out fluctua-
tions. When d = 1, our weight function is defined to be constant for all data and
no longer has compact support. The resulting surface is simply the standard
least-squares planar approximation to the entire data set.

Since at every point we are looking for a least-squares plane, there is a
rigid mathematical requirement that we have at least three data values in the
disk of radius h centered at each point in the image. Without these, the linear
system will be under-determined, and we won’t be able to find a solution to
the least-squares problem.

Others working on this problem have suggested methods for getting an
approximation to the edge data, but these are all interpolants, and as we have
previously mentioned, this is not necessarily desirable. One method described
is a moving weighted average, which is simply an MLS method with S
(x,y) = a. The resulting surface will have horizontal tangent planes or
‘‘flat-spots’’ at each of the data points.

In addition, as the evaluation moves away from data, the value of the
weighted average will tend to the actual mean of the data. This may cause

Chapter 4 ■ Grey-Level Segmentation 159

unusual artifacts if the illumination gradient is actually linear. Figure 4.9
shows an example of weighted averages, restricted to the one-dimensional
case. Figure 4.9b shows an example of the MLS method applied to the same
data.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.00

20.00

40.00

60.00

80.00

100.00

0.00 50.00 100.00 150.00 200.00 250.00 0.00 50.00 100.00 150.00 200.00 250.00

(a) (b)

Figure 4.9: Weighted averaging versus MLS. (a) For a one-dimensional sample, the
weighted average method shows flat spots at each data point. (b) MLS gives a smooth curve.

4.2.3 Implementation and Results
The ELT thresholding software consists of three major modules: the ISEF edge
detector, the MLS surface fit, and the thresholding module. The function and
sequence of execution is best described by using an example. Consider the
image of Figure 4.8b, in which a bright Gaussian spot has been superimposed
on the image of a map. The first step is edge detection by ISEF, and the result
is shown in Figure 4.10a. Notice that clean edges are found even in the dark
areas of the image. This is the secret of the ELT method: ISEF finds edges very
well, and these edges are well localized.

Next, the grey levels at all edge pixels are used to form the basis of a surface,
and the levels at the non-edge pixels are estimated from this surface, as found
by the MLS procedure. For this case the surface is shown in Figure 4.10b as
grey levels. The value of the function at the edge pixels will be very near to the
actual value of the corresponding image pixel, and will be assumed to be near
to the value of non-edge object pixels as well. The final stage is a pass through
the image, setting all pixels to zero if they are less than the value of the fit
function +10, and setting them to MAX (255) otherwise. Figures 4.10c–e show
the results.

160 Chapter 4 ■ Grey-Level Segmentation

(a) (b) (c)

(d) (e)

Figure 4.10: ELT example. (a) Shen-Castan edges for Figure 4.8b. (b) Surface fit to the
edge pixels. (c) The thresholded version of Figure 4.8a. (d) The thresholded version of
4.8b. (e) The thresholded version of 4.8c.

In general, the results of ELT thresholding are better than other algorithms in
situations of poor illumination, especially when compared to single-threshold
methods. Standard methods give results that have large black areas where the
illumination reaches low levels, and the objects can’t be determined from the
background. ELT permits widely varying thresholds across the image.

4.2.4 Comparisons
The ELT algorithm has been compared with other thresholding methods, and
none has given the same results in widely varying illumination environments.
A major problem is that it is quite slow at this time, taking many minutes to
threshold even a 256x256 image. However, there are a few parameters to the
algorithm that could be adjusted: for example, the MLS code used relies on a
fixed value for the radius h for the entire image. This presents some problems
since in some regions a large radius is required so that we have at least three
points, while in other areas the points are so dense that the same size disk will
include hundreds of points.

Chapter 4 ■ Grey-Level Segmentation 161

4.3 Relaxation Methods

Relaxation is an iterative process. For the specific problem of image threshold-
ing, the thresholds for any given iteration are computed as a function of those
in the same neighborhood at the previous iteration. The following algorithm
illustrates this process:

1. Create an initial guess at a segmentation for the image. Provide an
estimate of the confidence in that guess at each pixel.

2. For each pixel, modify the segmentation and the confidence estimate
based on the pixels in the local region; the surrounding eight pixels will
do.

3. Repeat step 3 until the segmentation is complete. This might occur when
no further changes are seen in successive steps.

The confidence estimates have the appearance of probabilities, although
they may not be accurate in that regard; all that matters is that they are
fairly accurate with respect to the other pixels, especially those in the local
neighborhood.

One way to find an initial classification is to use the mean grey level
as a benchmark. A pixel greater than the mean has a probability of being
white — that is, in proportion to the relative distance of its grey level from
the level 3/4 along the total range. For a pixel less than the mean we use 1/4

of the grey-level range. Thus, one possibility for the initial classification is
[Rosenfeld, 1981]:

p0
i = 1

2
+ 1

2
gi − µ

max − µ
(EQ 4.46)

This describes the situation for a pixel greater than the mean, where m is the
mean value, max is the largest grey level, and gi is the grey level of pixel i. For
pixels less than the mean, we have:

q0
i = 1

2
+ 1

2
µ − gi

µ − min
(EQ 4.47)

The value pi
0 is the initial probability that pixel i is white, and qi

0 is the
probability that it is black. The superscript refers to the iteration, which is
currently zero.

Now the problem is: given that the probabilities of being white and black are
known for a pixel and its neighborhood, how can the probabilities be refined
so that they are driven to either end of the spectrum more clearly? Ideally
these probabilities should become one or zero, giving a firm segmentation.
What is needed is some measure of compatibility, which can be used to decide
whether a particular classification is reasonable or not. For example, if a pixel
is black and all its neighbors are white, it would seem likely that the black

162 Chapter 4 ■ Grey-Level Segmentation

pixel should become white. The compatibility of that pixel with its neighbors
is low, suggesting a change.

Compatibility will be estimated by a function C(i, c1, j, c2) which returns a
measure, between −1 and 1, of how compatible pixel i, which is class c1, is with
pixel j, which is class c2. For a thresholding problem, there are only two classes,
black or white, and for a small neighborhood the pixels i and j will be adjacent
to each other. It is not possible to know for certain what this function should
be, because it depends on probabilities found in the final thresholded image,
and that is not known. However, a simple implementation would have C = 1
when c1 = c2, and C =−1 otherwise; that is, pixels are compatible if they agree.

Now, since there are two classes possible for any pixel, the average of these
could be used as an overall compatibility between any two pixels:

Qij = C(i, c1, j, white)pj + C(i, c1, j, black)qj (EQ 4.48)

The compatibility of a region around the pixel i can be defined as the average
compatibility of all eight neighbors:

Qi(c1) = 1
8

∑
j ∈ N

C(i, c1, j, white)pj + C(i, c1, j, black)qj (EQ 4.49)

for the one-pixel neighborhood N centered at i. This will be the net increment
to pi each time the probabilities are updated. However, to ensure that the p and
q values remain positive, add 1 to Q. Then the values should be normalized
over the region. This gives the following updating scheme:

p k+1
i = p k

i (1 + Q k
i)

p k
i (1 + Q k

i (white)) + q k
i (1 + Q k

i (black))
(EQ 4.50)

where the superscript reflects the iteration number. A similar expression holds
for the q values.

Each iteration of the relaxation process involves looking at all pixels in the
image and updating the p (and q) values. Once a p becomes 0 or 1, it stays
that way; thus, the initial classification is very important to the success of the
method. In fact, the actual pixel values are never examined after the initial clas-
sification is complete; all further processing is performed on the probabilities.

Figure 4.11 shows some of the segmentations that result from the method,
implemented directly from Equations 4.46–4.50. These were created by the
program relax.c, the source code of which can be found on the website. It
is clear, especially from the pascal image with sine-wave illumination, that
something is wrong. Because a single mean for the whole image was used in
the initial segmentation the whole process gets off to a bad start. Areas that
are too dark initially can never recover, except a little bit at the boundaries.

For this reason, a modification was made to the program, which is found in
the program relax2.c. In this version, the initial classification is done using
small regions of the image, instead of the whole thing. The hope is that the more
localized initial classification will now permit some of the illumination effects

Chapter 4 ■ Grey-Level Segmentation 163

to be accounted for by the relaxation process. Figure 4.12 shows the results of
this exercise. These images are a little better. It would appear that the relaxation
approach, as implemented here, is quite sensitive to the initial classification.

(a) (b) (c)

Figure 4.11: Relaxation thresholding: (a) the sky image, (b) the pascal image with
sine-wave illumination, (c) the face image with linear illumination.

(a) (b) (c)

Figure 4.12: Relaxation thresholding, using an initial classification based on regional
thresholds. These are better than those in Figure 4.11 but are not as good as some of the
methods examined already.

Finally, as an illustration of the kind of experimentation that can be done, a
new version of the relaxation program (called relax3.c on the website) was
devised. The function Qi in Equation 4.49 does not make use of the actual grey
levels in the image, and as a result the levels are never used after the initial
classification is performed. This is changed in relax3.c so that the function
Qi returns a ‘‘probability’’ related to the difference in level of the two pixels
involved. Pixels that are both supposed to be black in the segmented image
should have levels that are near to each other; pixels that are supposed to be
different should have differing levels.

Although the results are not significantly different from those of Figure 4.12,
this version of the program was selected to appear in Figure 4.13 because it
reflects an approach: experimentation is to be encouraged.

164 Chapter 4 ■ Grey-Level Segmentation

/* Relaxation method 2 - Rosenfeld & Kak */

void thr_relax (IMAGE im)

{

float res = 0.0, minres = 10000.0, **p, **q;

int iter = 0, i, j, count = 0;

/* Space allocation */

p = f2d (im->info->nr, im->info->nc);

q = f2d (im->info->nr, im->info->nc);

pp = f2d (im->info->nr, im->info->nc);

qq = f2d (im->info->nr, im->info->nc);

/* Initial assignment of pixel classes */

assign_class (im, p, q);

/* Relaxation */

do

{

res = update (im, p, q);

iter += 1;

printf (“Iteration %d residual is %f\n“, iter, res);

if (res < minres)

{

minres = res;

count = 1;

} else if (fabs(res-minres) < 0.0001)

{

if (count > 2) break;

else count++;

}

} while (iter < 100 && res > 1.0);

thresh (im, p, q);

}

/* Threshold */

void thresh (IMAGE im, float **p, float **q)

{

int i,j;

for (i=0; i<im->info->nr; i++)

for (j=0; j<im->info->nc; j++)

if (p[i][j] > q[i][j]) im->data[i][j] = 0;

else im->data[i][j] = 255;

}

float R(IMAGE im, int r, int c, int rj, int cj, int l1, int l2)

{

Figure 4.13: C source code for the program relax3.c; it thresholds an image using a
relaxation method.

Chapter 4 ■ Grey-Level Segmentation 165

float xd = 0.0;

xd = 1.0 - (im->data[r][c] - im->data[rj][cj])/256.0;

if (l1 == l2) return xd*0.9;

return -(1.0-xd)*0.9;

}

void assign_class (IMAGE im, float **p, float **q)

{

int i,j;

float ud2, y, z, u, lm2;

for (i=0; i<im->info->nr; i++) /* Mean of local area */

for (j=0; j<im->info->nc; j++)

{

meanminmax (im, i, j, &u, &z, &y);

ud2 = 2.0*(u-z);

lm2 = 2.0*(y-u);

if (im->data[i][j] <= u)

{

p[i][j] = 0.5 + (u-im->data[i][j])/ud2;

q[i][j] = 1.0-p[i][j];

} else {

q[i][j] = (0.5 + (im->data[i][j]-u)/lm2);

p[i][j] = 1.0-q[i][j];

}

}

}

void meanminmax (IMAGE im, int r, int c, float *mean, float *xmin,

float *xmax)

{

int i,j, sum = 0, k=0;

unsigned char *y;

y = im->data[0];

*xmin = *xmax = im->data[r][c];;

for (i=r-10; i<=r+10; i++)

for (j=c-10; j<=c+10; j++)

{

if (range(im, i, j) != 1) continue;

if (*xmin > im->data[i][j]) *xmin = im->data[i][j];

else if (*xmax < im->data[i][j]) *xmax = im->data[i][j];

sum += im->data[i][j];

k++;

}

*mean = (float)sum/(float)(k);

}

Figure 4.13: (continued)

166 Chapter 4 ■ Grey-Level Segmentation

float Q(IMAGE im, float **p, float **q, int r, int c, int class)

{

int i,j;

float sum = 0.0;

for (i=r-1; i<=r+1; i++)

for (j=c-1; j<=c+1; j++)

if (i!=r || j!=c)

sum += R(im, r, c, i, j,class, 0)*p[i][j] +

R(im, r, c, i, j,class, 1)*q[i][j];

return sum/8.0;

}

float update (IMAGE im, float **p, float **q)

{

float z, num, qw, pk, qb;

int i,j;

for (i=1; i<im->info->nr-1; i++)

for (j=1; j<im->info->nc-1; j++)

{

qb = (1.0 + Q(im, p, q, i, j, 0));

qw = (1.0 + Q(im, p, q, i, j, 1));

pk = p[i][j]*qb + q[i][j]*qw;

if (pk == 0.0)

{

continue;

}

pp[i][j] = p[i][j]*qb/pk;

qq[i][j] = q[i][j]*qw/pk;

}

z = 0.0;

for (i=1; i<im->info->nr-1; i++)

for (j=1; j<im->info->nc-1; j++)

{

z += fabs(p[i][j]-pp[i][j]) + fabs(q[i][j]-qq[i][j]);

p[i][j] = pp[i][j];

q[i][j] = qq[i][j];

qq[i][j] = pp[i][j] = 0.0;

}

return z;

}

Figure 4.13: (continued)

Chapter 4 ■ Grey-Level Segmentation 167

There are a great number of ways to update the probabilities, to weight the
Q values, and to perform the initial classification. A good algorithm is soundly
based in mathematics and good sense, but there is a lot of leeway in how it
might be implemented.

4.4 Moving Averages

The relaxation method has one serious drawback that has not been men-
tioned — it is very slow. If speed is a criterion of interest, then a method
that uses moving averages is quite appealing [Wellner, 1993]. This algorithm
yields one threshold per pixel very quickly, and gives surprisingly good seg-
mentations. It is designed for images containing text; for example, scanned
documents. In these cases the illumination can be expected to be good, as can
the general image quality.

A moving average is just the mean grey level of the last n pixels seen. The
image can be treated as a one-dimensional stream of pixels, which is common
in C anyway, and the average can either be computed exactly or estimated via:

Mi+1 = Mi − Mi

n
+ gi + 1 (EQ 4.51)

where Mi+1 is the estimate of the moving average for pixel i + 1 having grey
level gi+1, and Mi is the previous moving average (i.e., for pixel i).

Any pixel less than a fixed percentage of its moving average is set to black,
otherwise to white. To avoid a bias for one side of the image over the other,
a novel scanning method called boustrophedon1 scanning was employed. This
means traversing pixels in opposite directions in every other line. That is, the
pixel following the last one in row i is the last one in row i + 1, followed by
the second last in row i + 1, and so on back to the start of row i + 1; this is
followed by the start pixel in row i + 2, and so to the final one. This avoids
the discontinuity at the end of the line that occurs with the usual C method of
scanning a two-dimensional array.

The process begins with an estimate of the moving average; a value of
127 ∗ n was selected, and this will only affect the first few pixels in the image.
The value of n used is the number of columns divided by 8. Now Equation
4.51 is used to compute the moving average estimate for the next pixel (the
first), which is used immediately as a threshold:

V =

 0 if gi <

(
Mi

n

)
×
(

100 − pct
100

)
255 otherwise

(EQ 4.52)

1Greek, meaning ‘‘as the ox plows.’’

168 Chapter 4 ■ Grey-Level Segmentation

where V is the thresholded pixel and pct is the fixed percentage value; pct = 15
was used for the examples shown here.

A simple extension of this process averages the current threshold with
the one from the row above, allowing the vertical propagation of grey-level
variations and illumination changes. This is not done in the program thrdd.c,
which implements this scheme, but is an easy addition.

Figure 4.14 contains some of the images segmented by this method. The
results are fairly good, at least until 4.14d. The white region in the margins
seems to have fooled it, at least in this case. Still, the program is very quick,
and is 64 lines of C code (without the I/O functions), requiring at most two
rows to be in memory at one time.

(a)

(c)

(b)

(d)

Figure 4.14: Images segmented by the moving averages method. (a) The sky image. (b)
The pascal image with superimposed sine-wave illumination. (c) The face image with
linear illumination. (d) The pascal image with Gaussian illumination. This method works
best on images of text, for which it was designed.

A likely pitfall is the fixed percentage value used to select the threshold
from the mean. It is unlikely that a single value will be appropriate for use
with a variety of image types. It does, however, seem highly appropriate for
thresholding text, a function that it seems it was designed to perform.
Figure 4.15 gives the complete source code for thrdd.c.

Chapter 4 ■ Grey-Level Segmentation 169

#define MAX

#include “lib.h“

void thrdd (IMAGE im);

void main (int argc, char *argv[])

{

IMAGE data;

if (argc < 3)

{

printf (“Usage: thrdd <input file> <output file>\n“);
exit (0);

}

data = Input_PBM (argv[1]);

if (data == NULL)

{

printf (“Bad input file '%s’\n“, argv[1]);

exit(1);

}

thrdd (data);

Output_PBM (data, argv[2]);

}

void thrdd (IMAGE im)

{

int NC, row, col, inc;

float mean, s, sum;

unsigned char *p;

long N, i;

N = (long)im->info->nc * (long)im->info->nr;

NC = im->info->nc; s = (int)(float)(NC/Navg);

sum = 127*s; row = col = 0; inc = 1;

p = &(im->data[0][0]);

for (i=0; i<N-1; i++) {

if (col >= NC) {

col = NC-1; row++; inc = -1;

p = &(im->data[row][col]);

} else if (col < 0)

{

col = 0; row++; inc = 1;

p = &(im->data[row][col]);

}

sum = sum - sum/s + *p;

mean = sum/s;

if (*p < mean*(100-pct)/100.0) *p = 0; else *p = 255;

p += inc; col += inc;

}

}

Figure 4.15: Source code for the program thrdd.c: adaptive thresholding using a moving
average.

170 Chapter 4 ■ Grey-Level Segmentation

4.5 Cluster-Based Thresholds

The prior discussion of the use of the grey levels on edge pixels to build
local thresholds leads naturally to a discussion of the role of distance
and local geometry in determining thresholds [Kwon, 2004]. Kwon suggests
the use of a cluster-analysis technique to group the pixels into foreground
and background based on a threshold and geometric distances. In particular,
vectors that represent the mean of the two classes are created by scanning the
image with a trial threshold, t. Then the sum of the squared distances between
the class mean and each pixel in the class is computed and used as a significant
part of an objective function J(t) to be minimized. This function is computed
for all values of t and the threshold corresponding to the smallest value of J.
The class mean vectors are:

v1 = 1
N1

∑
xk∈X1

xk v2 = 1
N2

∑
xk∈X2

xk (EQ 4.53)

where N1 and N2 are the number of pixels in the foreground (black) and
background (white) classes, respectively, and X1 and X2 are the sets of pixels
comprising each class. The xk are vectors representing the pixels: xk = (xk

1, xk
2),

and the variables v1 and v2 also represent vectors with components being the
mean i and j coordinate of pixels in each class.
An overall mean could be calculated as

v = 1
N1 + N2

∑
xk∈X

xk (EQ 4.54)

Given these components, the objective function to be minimized by this
thresholding algorithm is:

Jk(t) =

∑
xk∈X1

p2
∥∥x1 − v1

∥∥2 + ∑
xk∈X1

p2
∥∥x2 − v2

∥∥2 + ∑2
i = 1

∥∥vi − v
∥∥2

∥∥v1 − v2

∥∥2 (EQ 4.55)

The value p is a normalizing factor and is given by p = 1/(N1 + N2).
Computing the threshold is a matter of finding the t for which Jk(t) is a
minimum, which means calculating Jk for all possible t. Don’t forget that each
time t changes so do the sets x1 and x2. Note that this has some significant
similarities in basic design to the minimum error method discussed in Section
4.1.6 and some of the other methods discussed.

Sample results from this algorithm are given in Figure 4.16. The results on
our standard images are not spectacular, but on some pathological images
it works better than most. However, this method has an advantage: it is
relatively simple to add more pixel classes and to use more than one threshold
to distinguish between them. It is also a natural extension to use this method

Chapter 4 ■ Grey-Level Segmentation 171

over multiple sub-images within a larger one, where each sub-image will have
a distinct v.

(a) (b) (c)

Figure 4.16: Sample results from the cluster-based thresholding algorithm

4.6 Multiple Thresholds

The clear object/background dichotomy leads to the idea that pixels belong
to two classes and that there should be a way to distinguish between them.
The use of a simple, single threshold value for this purpose is elegant, in spite
of the large number of ways in which it may be determined. There are some
situations for which the dichotomy is less relevant, and some for which more
than one pixel class can be found. For these cases, multiple thresholds can
be used. An early discussion of this subject can be found in [Wang, 1984].
However, many of the methods discussed so far can be extended to more
than one threshold. Specifically, the original description of the minimum error
thresholding method [Kittler, 1986] has specifically included an extension for
multiple thresholds, and will be used as an example.

For two thresholds (three regions), the objective function of Equation 4.29 is
extended to become

J(t1, t2) = 1 + 2

(
2∑

i = 1

Pi(t1, t2) log(σi(t1, t2))

)

−2

(
2∑

i = 1

Pi(t1, t2) log(Pi(t1, t2))

)
(EQ 4.56)

There are now three of each of the histogram-based functions Pi, σ i, and
µi representing the three regions segmented by the two thresholds, and each
function needs the two thresholds as parameters. It is plain how to extend
this to an arbitrary number of regions. Figure 4.17 shows the images resulting
from using two thresholds to segment the familiar set of test images. In these

172 Chapter 4 ■ Grey-Level Segmentation

instances, the pixels ≤ t1 become 0, those > t2 become 255, and those between
are set to 128.

(a) (b) (c)

Figure 4.17: Sample results from the cluster-based thresholding algorithm

In most cases, multiple thresholds are used in particular circumstances, and
those circumstances dictate the way the thresholds are computed. Mixed text
and image documents would use a different method from X-rays and CAT
scan images. It would be essential to characterize the nature of the pixels in
each class and in what ways they are distinct from those in other classes for a
multiple thresholding technique to be effective.

4.7 Website Files
kwon.c Thresholding using clustering

relax.c Relaxation method, Rosenfeld & Kak

relax2.c Relaxation method, Rosenfeld & Kak

relax3.c Relaxation method, Rosenfeld & Kak

thrdd.c Adaptive thresholding (digital desk)

thrfuz.c Fuzziness minimization

thrglh.c Grey-level histograms (Otsu)

thris.c Iterative selection

thrjoh.c Johannsen method using entropy

thrkapur.c Kapur method using entropy

thrlap.c Use of Laplacian

Chapter 4 ■ Grey-Level Segmentation 173

thrme.c Minimum error

thrme2.c Minimum error, two thresholds

thrmean.c Mean of image grey level

thrmulis.c Iterative selection over multiple regions

thrpct.c Percentage of black pixels

thrpun.c Pun method using entropy

twopeaks.c Find threshold between two histogram
peaks

face.jpg Face image

faceg.jpg Face image with Gaussian illumination

facel.jpg Face image with linear illumination

faces.jpg Face image with sinusoidal illumination

pascal.jpg Text image

pascals.jpg Text image with sinusoidal illumination

sky.jpg Sky image

skyg.jpg Sky image with Gaussian illumination

skyl.jpg Sky image with linear illumination

4.8 References

Bracho, R. and A. C. Sanderson, ‘‘Segmentation of Images Based On Intensity
Gradient Information,’’ Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, San Francisco, June 19–23 (1985):
341–347.

Chow, C. K. and T. Kaneko. ‘‘Automatic Boundary Detection of the Left
Ventricle from Cineangiograms,’’ Computers and Biomedical Research 5 (1972):
388–410.

Dong, L., G. Yu P. Ogunbona, and W. Li ‘‘An Efficient Iterative Algorithm for
Image Thresholding,’’ Pattern Recognition Letters 29 (2008): 1311–1316

Huang, L. K. and M. J. Wang. ‘‘Image Thresholding by Minimizing the
Measures of Fuzziness,’’ Pattern Recognition 28, no. 1 (1995): 41–51.

Johannsen, G., and J. Bille ‘‘A Threshold Selection Method Using Informa-
tion Measures,’’ Proceedings of the Sixth International Conference on Pattern
Recognition, Munich, Germany (1982): 140–143.

174 Chapter 4 ■ Grey-Level Segmentation

Kapur, J. N., P. K. Sahoo, and A. K. C. Wong. ‘‘A New Method for Gray-Level
Picture Thresholding Using the Entropy of the Histogram,’’ Computer Vision,
Graphics, and Image Processing 29, no. 3 (1985): 273–285.

Kittler, J. and J. Illingworth. ‘‘On Threshold Selection Using Clustering
Criteria,’’ IEEE Transactions on Systems, Man, and Cybernetics 15, no. 5 (1985):
652–655.

Kwon, Soon H. ‘‘Threshold Selection Based on Cluster Analysis,’’ Pattern
Recognition Letters 25 (2004): 1045–1050.

Lancaster, P. and K. Salkauskas ‘‘Surfaces Generated by Moving Least Squares
Methods,’’ Mathematics of Computation. 37 (1981): 141–158.

Oh, W. and B. Lindquist. ‘‘Image Thresholding by Indicator Kriging,’’ IEEE
Transactions on Pattern Analysis and Machine Intelligence. 21 (1999): 590–602.

Otsu, N. ‘‘A Threshold Selection Method from Grey-level Histograms,’’ IEEE
Transactions on Systems, Man, and Cybernetics 9, no. 1 (1979): 377–393.

Parker, J. R. ‘‘Grey Level Thresholding in Badly Illuminated Images,’’ IEEE
Transactions on Pattern Analysis and Machine Intelligence 13, no. 8: (1991).

Perez, A. and R. C. Gonzalez. ‘‘An Iterative Thresholding Algorithm for Image
Processing,’’ IEEE Transactions on Pattern Analysis and Machine Intelligence 9,
no. 6 (1987):

Portes de Albuquerque, M., I. A. Esquef , and A. R. Gesualdi Mello ‘‘Image
Thresholding Using Tsallis Entropy,’’ Pattern Recognition Letters 25 (2004):
1059–1065.

Press, W. H., Numerical Recipes in C. Cambridge: Cambridge University Press,
1988.

Prewitt, J. M. S. ‘‘Object Enhancement and Extraction’’, in Picture Processing
and Psychopictorics, ed. B. Lipkin and A. Rosenfeld. New York: Academic
Press, 1970.

Pun, T. ‘‘A New Method for Grey-Level Picture Thresholding Using the
Entropy of the Histogram,’’ Signal Processing 2, no. 3 (1980): 223–237.

Ridler, T. W. and S. Calvard ‘‘Picture Thresholding Using an Iterative Selection
Method,’’ IEEE Transactions on Systems, Man, and Cybernetics 8, no. 8 (1978):
630–632.

Rosenfeld, A. and R. C. Smith. ‘‘Thresholding Using Relaxation,’’ IEEE
Transactions on Pattern Analysis and Machine Intelligence 3 (1981): 598–606.

Rosenfeld, A. and A. C. Kak Digital Picture Processing. New York: Academic
Press, 1976.

Sahoo, P. K., ‘‘A Survey of Thresholding Techniques,’’ Computer Vision,
Graphics, and Image Processing 41, no. 2 (1988): 233–260.

Salkauskas, K. and P. Lancaster Curve and Surface Fitting, An Introduction. New
York: Academic Press, 1981.

Sankur, B. and M. Sezgin ‘‘A Survey Over Image Thresholding Techniques
and Quantitative Performance Evaluation,’’ Journal of Electron Imaging 13 no.
1 (2004): 146–165.

Chapter 4 ■ Grey-Level Segmentation 175

Sezgin, M. and R. Tasaltin ‘‘A New Dichotomization Technique to Multilevel
Thresholding Devoted to Inspection Applications, Pattern Recognition,’’
Pattern Recognition Letters 21, no. 2 (2000): 151–161.

Theodoridis, S. and K. Koutroumbas Pattern Recognition. London: Academic
Press, 2003.

Thrussel, H. J. ‘‘Comments on ‘‘Picture Thresholding Using an Iterative Selec-
tion Method,’’ IEEE Transactions on Systems, Man, and Cybernetics 9, no. 5
(1979): 311.

Tsallis, C. ‘‘Nonextensive Statistical Mechanics and its Applications,’’ ed.
S. Abe, Y. Okamoto Series Lecture Notes in Physics, Berlin: Springer-Verlag,
2001 (see http://tsallis.cat.cbpf.br/biblio.htm).

Wang, Shyuan and R. M. Haralick ‘‘Automatic Multi-threshold Selection,’’
Computer Vision, Graphics, and Image Processing 25, no. 1 (1984): 46–67.

Wellner, P. D. ‘‘Adaptive Thresholding for the DigitalDesk,’’ EuroPARC Tech-
nical Report EPC-93-110 (1993):

Weszka, J., C. Dyer , and A. Rosenfeld ‘‘A Comparative Study of Texture
measures for Terrain Classification,’’ IEEE Transactions on Systems, Man, and
Cybernetics 6, no.4 (1976):

Wilson, R. and M. Spann Image Segmentation and Uncertainty. New York: John
Wiley & Sons Inc., 1988.

Yager, R. R. ‘‘On the Measures of Fuzziness and Negation, Part 1: Member-
ship in the Unit Interval,’’ International Journal of General Systems. 5 (1979):
221–229.

Yang, Y. and H. Yan ‘‘An Adaptive Logical Method for Binarization of
Degraded Document Images,’’ Pattern Recognition 33 (2000): 787–807.

Yanowitz, S. D. and A. M. Bruckstein ‘‘A New Method for Image Segmen-
tation,’’ Computer Vision, Graphics, and Image Processing 46, no. 1 (1989):
82–95.

Yin, P. Y. ‘‘Maximum Entropy-Based Optimal Threshold Selection Using
Deterministic Reinforcement Learning with Controlled Randomization,’’
Signal Processing 82, no. 7 (2002): 993–1006.

C H A P T E R

5

Texture and Color

5.1 Texture and Segmentation

When we look at a picture, we can easily connect regions having a similar
grey or color value into objects. Indeed, we can even account for variations
in level caused by illumination and distinguish those from changes caused
by overlapping objects. The presence of texture, and to a lesser extent color,
complicates the issue, especially from a computer vision perspective.

While there is no agreement on a formal definition of texture, a major
characteristic is the repetition of a pattern or patterns over a region. The pattern
may be repeated exactly, or as a set of small variations on the theme, pos-
sibly a function of position. There is also a random aspect to texture that
must not be ignored: the size, shape, color, and orientation of the elements
of the pattern (sometimes called textons) can vary over the region. Sometimes
the difference between two textures is contained in the degree of variation
alone, or in the statistical distribution found relating the textons. In either
case, it is more difficult to characterize the degree of difference or similarity
between two textured portions of an image than it is to find a difference in
grey level.

Color does not represent a pattern or arrangement of elements, but it is also
more complex than grey level. Color possesses three coordinates — whether
RGB, HSV, or some other set — that are essentially orthogonal. A small change
in one coordinate may represent a tiny perceptual change, but result in a
large distance between the colors involved. Changes in hue are not necessarily
reflected as concomitant changes in intensity. There are also many millions of

177

178 Chapter 5 ■ Texture and Color

colors involved with most images, as opposed to the 256 or so normally found
in grey-level pictures. This means that enumerating thresholds and other such
computations require a lot of time to complete.

Some of the color segmentation work that will be done amounts to reducing
the number of colors to a small number, one that represents the number or
regions perhaps. Some will be concerned with reducing the dimensionality
of the problem. But in both cases, for texture and for color, the idea is to
simplify the image so as to see the larger components more clearly. The basic
principle is: Parts of the image that belong to a particular object have pixels that are
more like each other than they are like pixels that belong to other objects.

Figure 5.1 shows a small collection of textures, some natural and some
artificial. The study of texture will be undertaken with the goal of segmenting
regions rather than characterizing textures. That is, the very practical issue of
determining which regions have texture A and which have texture B will be
addressed. The result could be an image in which texture has been replaced
by a unique grey level or color, or is given a descriptive label.

Test image T1
(a)

Test image T2
(b)

Test image T3
(c)

Test image T4
(d)

Test image T5
(e)

Figure 5.1: Some images displaying regions characterized by their texture. (a–b) Artificial
textures, such as might be used on maps to delimit regions of interest. (c–e) Naturally
occurring textures that delimit regions found in real scenes.

Chapter 5 ■ Texture and Color 179

Texture is a property possessed by a region that is sufficiently large to
demonstrate its recurring nature. A region cannot display texture if it is small
compared with the size of a texton. This leaves us with a problem of scale, in
addition to the other problems that texture presents. Indeed, the same texture
at two different scales will be perceived as two different textures, provided
that the scales are different enough. As the scales become closer together the
textures are harder to distinguish, and at some point they become the same.

It is unlikely, given the preceding discussion, that any simple measure
or operation will allow the segmentation of textured regions in a digital
image. The lines drawn between textures are often arbitrary, a function of
perception rather than mathematics. It is possible, on the other hand, that
some combination of operations can yield reasonably good segmentations
with a wide range of textures.

5.2 A Simple Analysis of Texture
in Grey-Level Images

A region having a particular texture, while having a wide variety in its grey
levels, must have some properties that allow animal visual systems to identify
them. While the existence of texture elements is crucial, it is unlikely that
a library of texture elements is maintained and recognized by any seeing
creature. It is more likely that similarities and differences can be seen, and that
a biological vision system can measure these and use them to delimit different
textural regions.

One obvious way to delimit regions is by color or grey level alone. However,
unlike grey-level segmentation, (in which each pixel is classed as white or
black), the grey level associated with each pixel in a textured region could be
the average (mean) level over some relatively small area. This area, which will
be called a window, can be varied in size to capture a sample of the different
scales to be found there.

The use of the average grey level is not recommended to distinguish between
textures, but the use of a method this simple does help explain the general
method that will be used to segment image regions according to texture. The
use of windows of some sort is very common, since texture is only a concern
in a region and not in individual pixels. As a result, the boundary between
textured regions can only be determined to within a distance of about W pixels,
where W is the width of the window.

Figure 5.2 illustrates this; we are using mean grey levels to segment the
image seen in Figure 5.1b. The method is: For each pixel in the image, replace
it by the average of the levels seen in a region W×W pixels in size centered
on that pixel. Now threshold the image into two regions using the new

180 Chapter 5 ■ Texture and Color

(average) levels. Figure 5.2a is the image of the mean grey levels and 5.2b
is a thresholded version of this, showing the original boundary between the
region superimposed. The exact location of the boundary between the regions
depends on the threshold that is applied to the mean-level image. A reasonable
threshold in this case is one that keeps the white region contiguous and on
the left of the image, and keeps the black region contiguous and on the right.
There is a range of reasonable thresholds, and the pixels that move from one
region to the other as the threshold changes are those marked in grey in Figure
5.2c. This corresponds to the boundary between the regions, and is essentially
an area of uncertainty. The actual boundary could be anywhere in the grey
area, but is most likely in the middle.

(a) (b) (c)

Figure 5.2: Windowing in texture segmentation. (a) Image consisting of mean grey levels
in a 14x14 window about all pixels in Figure 5.1b. (b) A thresholding of this image
showing two possible regions. (c) The region of uncertainty. The actual region boundary
could be anywhere within the grey area.

The use of mean grey level seems to work well enough for the sample image,
but this happens to be an exceptional case. It does not work at all well for
any of the remaining sample images when they are normalized for grey level.
On the other hand, using the standard deviation of the grey levels in a small
window works a lot better. There seems to be more consistency in the changes
in the levels than there is in the levels themselves. This does make some degree
of sense: We have seen that even in the presence of varying illumination, the
difference in level between local pixels remains nearly the same. In addition,
if the texture elements are small objects with a different set of levels than the
background, then the standard deviation in a small region tells us something
about how many pixels in that region belong to textons and how many belong
to the background.

Figure 5.3 shows the regions identified by using local standard deviations
to segment textural areas. Figure 5.1a can be segmented by this method; in
fact, so can all except 5.1d. Note that the precision with which the boundary
between regions is known is still a function of the size of the window used.

Chapter 5 ■ Texture and Color 181

This will always be true, and so there is an advantage in using methods that
permit the use of small windows.

(a) (b) (c)

(d) (e)

Figure 5.3: Use of standard deviation to segment the images of Figure 5.1. Note that the
standard deviation tends to be large where the two textures meet.

The mean grey level and the standard deviation are known as statistical
moments. The mean is related to the first moment, and the standard deviation
depends on the second moment. There are others, and these could also be used
to characterize textured areas. In general, we have:

Mn =
(x − x)
N

n

(EQ 5.1)

where N is the number of data points, and n is the order of the moment. Now
the skewness can be defined as:

Sk = 1
N

(
(x − x)

σ

)3

(EQ 5.2)

and the kurtosis as:

Kurt = 1
N

(
(x − x)

σ

)4

(EQ 5.3)

182 Chapter 5 ■ Texture and Color

These can be used in the same way as standard deviation: compute the
statistic over a window and let that be the value of the pixel at the center of the
window, and then segment the resulting image. Rather large windows would
be preferred, so that a statistical sample is gathered.

A single C program (included on the companion website) has been devised
for segmenting texture based on the preceding measures and on all of the
methods to be discussed in later sections. It is called simply text.c and will
produce an output image that has been transformed by whatever segmentation
algorithm is specified on the command line. The general way that this program
is invoked is by:

text image.pgm KEYWORD

where KEYWORD is replaced by the name of one of the texture segmentation
algorithms. For example, to use the average grey level over a window the
program would be called as:

text image.pgm grey_level

If not executing from a shell, then the program will ask for the parameters
from standard input. In that case, the exchange looks like this:

text

No command line args - asking for input.

Enter input file name: t1.pgm

Enter texture measure: grey_level

...

The result in this case is a collection of image files for windows of size 13×13,
21×21, 29×29, 27×27 and 45×45; these files are in PGM format and are named
txt6.pgm, txt10.pgm, txt14.pgm, txt18.pgm, and txt22.pgm, respectively. The
number in the file name refers to the number of pixels on each side of the
pixel in the middle of the window. For the example above, each pixel in the
resulting images represents the average level found in the window centered at
that pixel. The other keywords for the simple statistical measures are sd_level
(standard deviation), kurtosis, and skewness.

As more methods for texture segmentation are explored, these will be added
to the text.c program, and the relevant keywords and other parameters
needed will be explained. If the program is invoked without any parameters, a
short listing of the legal keywords will be printed on the screen as a reminder.

5.3 Grey-Level Co-Occurrence

The statistical texture measures described so far are easy to calculate, but
do not provide any information about the repeating nature of the texture.
For example, the texture seen on the left of Figure 5.1a consists of repeating

Chapter 5 ■ Texture and Color 183

horizontal lines. None of the measurements examined so far will reflect this
property, and so a set of vertical lines with the same widths and separations
will be indistinguishable from this texture, as would suitably constructed
diagonal lines.

A grey level co-occurrence matrix (GLCM) contains information about the posi-
tions of pixels having similar grey-level values. The idea is to scan the image
and keep track of how often pixels that differ by �z in value are separated by
a fixed distance d in position. Normally the direction between the two pixels
is also a concern, and this is implemented by having multiple matrices, one
for each direction of interest. Usually, there are four directions: horizontal,
vertical, and the two diagonals. Therefore, for every value of d we have four
images, each of which is 256×256 in size, for an original image with 256 levels
of grey. This is really too much data, often more than there is in the original
image. What is usually done is to analyze these matrices and compute a few
simple numerical values that encapsulate the information. These values are
often called descriptors, and eight of them will be examined here.

Collecting the value for the co-occurrence matrices is not especially difficult,
but it is time-consuming. Consider the problem of determining the GLCM for
an image I having 256 distinct levels of grey, in the horizontal direction and
for d = 2. This matrix will be called M0, and M0[i,j] will contain the number
of pixels p1 and p2 in I for which p1 = i and p2 = j where p1 and p2 are
separated by two pixels horizontally. The indices for M0 are grey levels, not
rows or columns of the image.

This could be calculated in the following manner. Examine all pixels in the
image I:

for (y=0; y<Nrows; y++)

for (x=0, x<Ncolumns; x++)

{

Let p1 be the grey level at pixel I[y,x] and let p2 be the grey level at the pixel
I[y,x + d]:

p1 = I[y] [x]; p2 = I[y] [x+d];

These two levels are used as indices into the matrix M0 being constructed;
increment the entry in M0.

M0 [p1] [p2] += 1;

Since M0 is symmetrical, we could also increment the symmetrical element:

M0 [p2] [p1] += 1;

or we could merge the upper and lower triangles after M0 is constructed. When
all of the pixels have been examined by this loop, the matrix M0 is complete.

184 Chapter 5 ■ Texture and Color

A final pass through M0 is needed if normalized values are wanted. Dividing
the elements of M0 by the number of pixels involved gives joint probabilities;
specifically M0[i,j] will be the probability that a pixel having grey level i will
have a pixel with level j a distance of d pixels away in the horizontal direction.
A very similar process will create the other three matrices.

The artificial textures of Figure 5.1a and 5.1b are ideally suited to be an
example, since they are bi-level images: The color black has level 0, and the
color white has level 255. If the 255 pixels are set to 1, then the GLCMs will be
2×2 matrices! For the horizontal line texture on the left of Figure 5.1a the line
separation is 2 pixels; the co-occurrence matrices for d = 1 are:

HORIZONTAL (0) VERTICAL (90)

0.5000 0.0000 0.2468 0.2532

0.0000 0.5000 0.2532 0.2468

and the diagonal matrices are the same as the vertical. These results make sense;
since the lines are horizontal, there will be no black-to-white level changes in
the horizontal direction. If you start on a black pixel, its horizontal neighbor
will be black (Mat0[0][0] = 0.5) and from any white pixel the horizontal
neighbor will be white (Mat0[1][1] = 0.5). For d = 2 the matrices are more
interesting:

HORIZONTAL (0) VERTICAL (90)

0.5000 0.0000 0.0000 0.5000

0.0000 0.5000 0.5000 0.0000

where, again, the diagonal matrices are the same as M90. This means that, no
matter what the color of the pixel we start at, its neighbor two pixels away
horizontally is the same color, and the neighbor two pixels away vertically is
always the opposite color. This is an accurate characterization of the horizontal
line texture.

As the number of grey levels in the image increases by a factor of 2,
the co-occurrence matrices increase in size by a factor of 4. It very quickly
becomes difficult to use the matrices directly, and so once again the use of
statistics becomes important. Rather than measure the properties of the image
directly, the co-occurrence matrices are measured and, as mentioned already,
characterized by a selection of numerical descriptors. The mean and standard
deviation have been used as descriptors for the image data, and could be used
for the co-occurrence matrices as well. However, many descriptors have been
tried, and some work better than others. Five of the more popular ones follow;
then each one will be tested on the sample textures of Figure 5.1.

Chapter 5 ■ Texture and Color 185

5.3.1 Maximum Probability
This is simple the largest entry in the matrix, and corresponds to the strongest
response or the most likely transition. This could be the maximum in any of
the matrices, or the maximum overall; in fact, there is useful information in
simply knowing which matrix contains the maximum, since this will indicate
an important direction for the texture being examined.

5.3.2 Moments
The order k element difference moment can be defined as:

Momk =
∑

i

∑
j

(i − j)kM[i, j] (EQ 5.4)

This descriptor has small values in cases where the largest elements in
M are along the principal diagonal; this was the situation when analyzing
Figure 5.1a. The opposite effect can be achieved using the inverse moment,
which is computed as:

Mom−1
k =

∑
i

∑
j

M[i, j]
(i − j)k

, i �= j (EQ 5.5)

5.3.3 Contrast
An estimate of contrast is given by the following expression:

C(k, n) =
∑

i

∑
j

∣∣i − j
∣∣k M[i, j]n (EQ 5.6)

When k = n = 1, which is the situation implemented by the software on the
website accompanying this book, this amounts to the expected value of the
difference between two pixels.

5.3.4 Homogeneity
This value is given by:

G =
∑

i

∑
j

M[i, j]
1 + ∣∣i − j

∣∣ (EQ 5.7)

A small value of G means that the large values of M lie near the principal
diagonal. G is very similar to Mom1

−1.

186 Chapter 5 ■ Texture and Color

5.3.5 Entropy
Entropy is calculated by:

H =
∑

i

∑
j

M[i, j] log(M[i, j]) (EQ 5.8)

This is a measure of the information content of M. Large empty (featureless)
spaces have little information content, whereas cluttered areas have a large
information content.

5.3.6 Results from the GLCM Descriptors
The software that actually segments images using GLCM descriptors is very
slow; one matrix must be computed for each window, followed by a calcula-
tion of the value for the descriptor — this yields a single pixel in the segmented
image. Because of this, experimentation should be done using small images,
smaller than the images in Figure 5.1. Each of these test images has been
subjected to all five of the descriptors, and samples of the resulting segmented
images appear in Figure 5.4.

The text.c program will compute the co-occurrence values described here.
However, in addition to a keyword indicating which measure to apply,
the co-occurrence calculation needs to be given a distance and a direction.
These are specified after the keyword and in that order; distance followed by
direction. Distance is specified as the number of pixels; direction is an integer,
having the value 0 for horizontal, 1 for 45 degrees, 2 for 90 degrees, and 3 for
135 degrees.

So, in order to segment the image t3.pgm using the entropy metric applied
to the co-occurrence matrix for a distance of two pixels in the horizontal direc-
tion the command would be:

text t3.pgm entropy 2 0

5.3.7 Speeding Up the Texture Operators
Creating a co-occurrence matrix for each window is not only slow and
memory-intensive in practice, but is not even necessary; it is not the matrix
that is needed, but some measure (descriptor) that will be used to characterize
it. Unser [1986] devised a method for computing the statistics without actually
creating the matrix.

The method is based on sum and difference histograms. The sum histogram
S depends on displacements dx and dy, and is the histogram of the sums of
all pixels dx and dy apart. For example, the pixel at (i,j) will be added to the

Chapter 5 ■ Texture and Color 187

pixel at (i + dy,j + dx) and the histogram bin corresponding to the sum is
incremented. For a 256-level image, the sum histogram has bins 0 through 512.
The difference histogram D is merely the histogram of the differences between
pixels the specified distance apart. Histogram D has bins −255 through +255
for an eight-bit image. Now the histograms S and D are normalized so that the
entries become probabilities.

Test image T1
segmented using entropy

Test image T2
segmented using homogeneity

Test image T3
segmented using moments (1)

Test image T4 segmented using homo-
geneity (distance = 3 orientation = 3)

Test image T5 segmented using contrast

Figure 5.4: Co-occurrence texture measures applied to the set of test images of Figure 5.1.
In all cases but one, the distance was 2 and the direction was horizontal.

The more common descriptors used to characterize co-occurrence matrices
can be approximated using only these two histograms. This is much more
efficient, since not only are the actual matrices not calculated, but the descrip-
tors are now computed using two small one-dimensional arrays instead of a

188 Chapter 5 ■ Texture and Color

large two-dimensional array. Some of the descriptors that are efficiently found
using sum and difference histograms are:

µ = 1
2

∑
i

i · S(i) Mean∑
j

j2 · D(j) Contrast

∑
j

1
1 + j2

· D(j) Homogeneity

−
∑

i

S(i) · log(S(i)) −
∑

j

D(j) · log(D(j)) Entropy

∑
i

S(i)2 ·
∑

j

D(j)2 Energy

While these are approximations, they are good enough to be quite useful,
and the speed up in the code is at least a factor of twenty. The C code that
accomplishes this is called fast.c, and while perhaps not pretty, it enables
texture analysis to be performed on a PC. Without the speedup, the use of
co-occurrence matrices is not practical on small computers, such as single
processor PCs.
Fast.c accepts almost the same parameters as does text.c when using

the co-occurrence measures. It recognizes the keywords average (mean
of the window), stddev (standard deviation in the window), pmax (max-
imum value), contrast (as before), homo (homogeneity, as before), and a
new measure, energy, which is defined by the last definition in the list
above. Most of the work is done by the procedure sdhist, which is given in
Figure 5.5. This function is somewhat more opaque than the usual code
shown here, but illustrates some of the methods that can be used to speed up
image-analysis code. In particular, note the absence of any two-dimensional
array references.

5.4 Edges and Texture

If a collection of objects called textons forms a texture, then it should be possible
to isolate individual textons and treat them as objects. It should be possible to
locate the edges that result from the grey-level transitions along the boundary
of a texton. Moreover, since a texture will have large numbers of textons, there
should be some property of the edge pixels that can be used to characterize
the texture; this property may be a set of common directions, distances over
which the edge pixels repeat, or simply a measure of the local density of the
edge pixels.

Chapter 5 ■ Texture and Color 189

/* Compute the sum and difference histograms, and the mean */

void sdhist (IMAGE im, int d, WINDOW *w)

{

int ngl=256,p1=0,p2=0,i=0,j=0,k=0,l=0,r=0,t=0,b=0,id=0,nc;

static float *Ps, *Pd;

float sum=0.0;

unsigned char *ptr1, *ptr2;

nc = im->info->nc;

/* Allocate the matrix */

if (Ps == 0)

{

Ps = (float *)calloc (ngl*2, sizeof(float));

Pd = (float *)calloc (ngl*2, sizeof(float));

Sum = Ps;

Diff = Pd;

}

dir = (int)param[4];

l = w->left; r = w->right; t = w->top; b = w->bottom;

/* Compute the histograms for any of 4 directions */

ptr2 = im->data[t];

for (i = t; i < b; i++)

{

ptr1 = ptr2+l; id = d*nc;

for (j = l; j < r; j++)

{

p1 = *ptr1;

if (j+d < r && dir == 0)

p2 = *(ptr1+d); /* Horizontal */

else if (i+d < b && dir == 2)

p2 = *(ptr1+id); /* Vertical */

else if (i+d < b && j-d >= l && dir == 1)

/* 45 degree diagonal */

p2 = *(ptr1 +id - d);

else if (i+d < b && j+d < r && dir == 3)

/*135 degree diagonal */

p2 = *(ptr1+id+d);

else { ptr1++; continue; }

k++, ptr1++; Ps[p1+p2]++; Pd[p1-p2+ngl]++;

}

ptr2 += nc;

}

/* Normalize */

for (i=0; i<ngl+ngl; i++)

{

Ps[i] /= k;

sum += Ps[i]*i;

Pd[i] /= k;

}

Mean = sum/2.0;

}

Figure 5.5: Source code for the procedure that calculates the sum and difference
histograms for a given window. The code has been designed to be relatively fast, rather
than readable. Two-dimensional array references are absent, and most arrays are treated
as pointers.

190 Chapter 5 ■ Texture and Color

A perfect example of this is the test image Figure 5.1a. The leftmost texture
consists of repeated horizontal lines; it is to be expected that a large number of
edge pixels having direction 0◦ will be found in this region. The neighboring
texture, on the other hand, consists only of diagonal lines, and should have
few (if any) edge pixels in this direction. Thus, edge pixel direction can be
used in this case to segment the two regions.

The density of the edge pixels is probably the simplest edge-based metric,
and is easy to calculate. A fast edge detector is applied to a window, and the
number of edge pixels in that window is divided by the area to give the density.
Any abrupt change in the edge-pixel density likely marks a boundary between
two regions. Since it is usually a simple matter to extract directional information
from an edge detector, this can be used to augment the edge density. Easy
measurements to make include the mean x and y component of the gradient at
the edge and the relative number of pixels whose principal direction is x or y.

Actual angles are harder to deal with since, depending on the window
size, there can be a larger number of different angles. The histogram of the
angles found in a window could characterize the texture there, but to compare a
large number of N-dimensional histograms would be computationally intense.
However, the spatial relationships between the pixels having particular angles,
and for that matter edge pixels in general, convey a great deal of information.
Why not compute the co-occurrence matrix of an edge-enhanced image? This
will, in many circumstances, give a better result, in terms of discriminating
ability, than using the co-occurrence matrix without edge enhancement [Dyer
1980; Davis 1981].

Figure 5.6 illustrates the use of edge information and co-occurrence statis-
tics. The original image shows a few trees, a cloudy sky, and part of a building.
The contrast measure of the grey-level co-occurrence matrix for this image
(5.6b) could give a classification, but enhancing the edges first (5.6c) increases
the contrast in edge-prone regions, such as the trees. The same contrast mea-
sure gives somewhat better results (5.6d) and was used to produce the final
classification (5.6e). The region containing clouds is quite well marked as black
in this image.

(a) (b) (c) (d) (e)

Figure 5.6: Using edges to enhance the results from co-occurrence matrices. (a) Original
image. (b) Contrast of the co-occurrence matrix, distance 4 horizontal. (c) Edge enhanced
image. (d) Contrast of the co-occurrence matrix of the edge image. (e) Classification
based on (d).

Chapter 5 ■ Texture and Color 191

Noise smoothing before edge detection will reduce the number of spurious
edge pixels, and will give better results in some instances. A Laplacian edge
detector is less directional, and could be used in place of the Sobel edge detector
in the software provided. Some of the more advanced edge detectors (e.g.,
Canny or ISEF) actually smooth too well, and respond to texture as if it were
noise. The contrast of the image may have to be increased greatly before one
of these methods could be used.

The text.c program cheats a little with respect to edges. Running text
with the sobel keyword will result in an edge-enhanced version of the original
file being written to sobtxt.pgm. This file can then be used as input to
fast.c or text.c, specifying the desired co-occurrence operator. For example,
Figure 5.6d was created in the following way:

text sky.pgm sobel

FAST sobtxt.pgm contrast 4 0

When the angles of the edge pixels are desired, specify sang as the keyword.
The result, again, is a file sobtxt.pgm containing the scaled angles. The
keywords dx and dy specify direction components in the x and y directions,
and nx and ny as keywords yield the number of edges in each window having
the largest component in the x or y direction.

5.5 Energy and Texture

There are many ways in which the energy content of an image could be
calculated, depending on how energy is defined and what kind of image is at
hand. One measure of the energy of a textured region was seen in Section 5.3,
where an energy measure was computed from a co-occurrence matrix. Laws
[1980] devised a collection of convolution masks specifically for the purpose
of computing the energy in a texture. These have been used successfully for
many years for texture segmentation, and are now a standard for comparison
for new algorithms.

Although various sizes for the masks are possible, three of the five pixel
masks are:

E5 = (−1, −2, 0, 2, 1)

L5 = (1, 4, 6, 4, 1)

R5 = (1, −4, 6, −4, 1)

These can be used in combination to create nine different two-dimensional
convolution masks. If they are treated as vectors, then E5×L5 gives a 5×5
matrix called E5L5 and having the value:

192 Chapter 5 ■ Texture and Color

−1 −4 −6 −4 −1

−2 −8 −12 −8 −2

0 0 0 0 0

2 8 12 8 2

1 4 6 4 1

After the convolution with the specified mask, the energy is computed by:

En =
∑

r

∑
c

∣∣C(r, c)
∣∣ (EQ 5.9)

where C is the convolved image. The size of the region used to determine the
energy can vary; a 7×7 region seems to be quite common. If all nine masks
that result from the combinations of E5, L5, and R5 are applied, the result is
a nine-dimensional feature vector at each pixel of the image being analyzed.
These vectors can be used with a statistical classifier (e.g., K nearest neighbor).
In some cases only one or two of the energy values are sufficient.

At the boundary between two regions having different textures, this method
(as well as many of the others we have seen) does not perform very well. The
pixels near the boundary form a region of high variability that, statistically,
has some properties of both adjoining regions. Sometimes this shows up in
images as a thick black or white bar separating the regions, while other times
it can be thresholded into one of the textures.

Something that has been suggested for use with the texture energy method
specifically, but that has more general application, is to look carefully at the
areas to the upper-left, upper-right, lower-left and lower-right of the window
being processed. At the interior of a region these four areas should have
statistically similar properties, but at the boundary between regions there will
be variations observed. When this occurs, select the energy value for the region
having the smallest standard deviation, this being most likely to be representative
of the interior.

All nine of these energy operators are implemented by the text.c program.
To apply an energy operator to an image, specify it as the keyword; for
example,

text input.pgm E5E5

will apply the E5E5 operator to image.pgm, producing a file named txtN.pgm,
where N is 6, 10, 14, 18, or 24, as before. The program creates the correct

Chapter 5 ■ Texture and Color 193

convolution mask and applies it to the input image, then determines the mean
energy value for the window. The letters in the keyword must be specified in
upper case. Figure 5.7 shows the result of each of the nine masks applied to
test image t4.pgm.

E5E5 E5L5 E5R5 L5E5 L5L5

L5R5 R5E5 R5L5 R5R5

Figure 5.7: All energy convolution masks applied to the test image T4. The final image is
the segmented version, using L5L5.

5.6 Surfaces and Texture

Some texture segmentation algorithms are based on a view of the grey-level
image as a three-dimensional surface, where grey level is the third dimension.
Depending on what sort of assumptions that are made concerning the nature
of this surface, any number of descriptors can be devised. Two will be
examined here, but the references give a few good pointers to other useful and
interesting work.

5.6.1 Vector Dispersion
For the purposes of this algorithm, the texture image consists of a set of small
planes, or facets. Each plane is really a small area of the image. The normal
to each plane is a vector, and for a region having many facets the variation in
the direction of the normals may produce a measure that can characterize the
texture in that region.

Figure 5.8 shows a 3×3 region of a grey-level texture, in which the grey level
is treated as a third dimension. The facets meet to form an edge every three

194 Chapter 5 ■ Texture and Color

pixels both horizontally and vertically, and do not overlap. Since a plane is a
linear equation in two dimensions, it can be written in the form:

I(i, j) = αi + βj + γ (EQ 5.10)

(a) (b)

Figure 5.8: Vector dispersion. (a) Each facet is a small plane having an easily computed
normal direction, indicated by the arrow. The posts supporting the facet represent the grey
level at each of the nine pixels. (b) Texture metrics are computed over a local collection
of facets, and represent how the directions of the normals are distributed about the local
mean normal.

for image I over a small (3×3) area. The coefficients are easy to find using a
least-squares best fit of a plane to the levels found in the small region of I.
Details can be found in the math book of your choice, but the result is:

α =

1∑
i =−1

1∑
j =−1

i · I(i, j)

i2
(EQ 5.11)

β =

1∑
i =−1

1∑
j =−1

j · I(i, j)

j2
(EQ 5.12)

γ =

1∑
i =−1

1∑
j =−1

I(i, j)

1
(EQ 5.13)

The coefficients α, β, and γ can be thought of as a vector. The normal vector is
perpendicular to the plane, and the normalized form (i.e., length = 1) for the
ith facet is:

 Ki

Li

Mi

 = 1√

α2
i + β2

i + 1

 αi

βi

−1

 (EQ 5.14)

Chapter 5 ■ Texture and Color 195

An estimate of the direction of the surface normal over the whole region can be
obtained from the facet normals by simply averaging them. If it is assumed that
the individual normals are measurements taken from the surface of a sphere,
then the statistical distribution of the errors is related to eκCOSθ , where θ is the
error in the angle [Fish 1952]. The value κ acts as a measure of precision, but
in the case of the measurement of vector dispersion, a large κ value indicates
a smooth texture, and values near zero indicate a rough texture. Given a set of
normal vectors, the value of κ can be estimated by

κ = N − 1
N − R

(EQ 5.15)

where R is found from the normal vectors:

R2 =
(

N∑
i = 1

Ki

)2

+
(

N∑
i = 1

Li

)2

+
(

N∑
i = 1

Mi

)2

(EQ 5.16)

This leaves us with the following algorithm:

1. For a given window into the image I, locate some number of non-
overlapping subregions.

2. For each subregion compute the coefficients of the plane, and from that
compute the normal to the plane for that subregion; this is a vector
(Ki,Li,Mi).

3. Normalize the vectors from step 2, and then compute R using the vectors
from all subregions.

4. Compute κ . This is the texture descriptor for this window. Repeat from
step 1 for all windows in the image.

As usual, the κ value for the window centered at a pixel P will be the value
of the pixel P in the segmented image. Thresholding the segmented image will
still be needed.

Figure 5.9 shows this method applied to the test images seen in Figures 5.1c
and 5.1e. When using the text.c program, simply specify the keyword vd.
Figure 5.9 was created using the call:

text t3.pgm vd

5.6.2 Surface Curvature
The vector-dispersion method fits a plane to the pixels in a small area, which
is really a first approximation to what is really there. A better approximation

196 Chapter 5 ■ Texture and Color

would be a polynomial surface, which can better conform to local variations
in shape. A typical second-degree polynomial surface is defined by:

z(x, y) = a20x2 + a11xy + a02y2 + a10x + a01y + a00 (EQ 5.17)

(a) (b) (c) (d)

Figure 5.9: Segmentation of texture regions using vector dispersion. (a) Vector dispersion
image obtained from Figure 5.1c. (b) Thresholded version, showing the two texture
regions. (c) Vector dispersion image obtained from Figure 5.1e. (d) Thresholded version.

Curvature can be defined as the rate of change of the slope of the tangent to the
surface at the point in question. Given this local approximation to the surface,
there are a number of surface curvature measures that might be useful for
characterizing the surface (and therefore the texture) at that point. This would
involve the following steps for each pixel in the region being evaluated:

1. Use least squares to fit a polynomial surface to the local pixel region.

2. Compute the derivatives of the surface at the specified point.

3. Use the derivatives, the slope of the tangent, to compute curvature.

Fortunately, this has been done for us by Peet and Sahota [Peet 1985]. The
values of aij are found in much the same way as were the values of α, β, and γ

for vector dispersion. For a 3×3 region centered at I(i,j) we have:

A1 =
1∑

n =− 1

1∑
m =− 1

I(i + n, j + m)

A2 =
i + 1∑

n = i − 1

I(n, j + 1) −
i + 1∑

n = i − 1

I(n, j − 1)

A3 =
j + 1∑

m = j − 1

I(i − 1, m) −
j + 1∑

m = i − 1

I(i + 1, m)

A4 =
i + 1∑

n = i − 1

I(n, j − 1) +
i + 1∑

n = i − 1

I(n, j + 1)

A5 =
j + 1∑

m = j − 1

I(i − 1, m) −
j + 1∑

m = j − 1

I(i + 1, m)

A6 = I(i − 1, j + 1) + I(i + 1, j − 1) − I(i − 1, j − 1) − I(i + 1, j + 1)

Chapter 5 ■ Texture and Color 197

The coefficients of the polynomial can now be expressed in terms of the Ai

values:

a20 = A4/2 − A1/3

a11 = A6/4

a02 = A5/2 − A1/3

a10 = A2/6

a01 = A3/6

a00 = 5A1/9 − A4/3 − A5/3

This is the least-squares fit of the surface to the data. The curvature can be
calculated given only a little more algebra motivated by differential geometry,
but it is really quite simple to compute. The following values are parameters
to the first and second fundamental forms of the surface:

E = 1 + a2
10

F = a10a01

G = 1 + a2
01

e = (2a20)/
√

EG − F2

f = (2a11)/
√

EG − F2

g = (2a02)/
√

EG − F2

The minimum curvature at the point I(i,j) is given by:

k1 =
gE − 2Ff + Ge −

√
(gE + Ge + 2Ff)2 − 4(egg − f 2)(EG − F2)

2(EG − F2)
(EQ 5.18)

and the maximum curvature is:

k2 =
gE − 2Ff + Ge −

√
(gE + Ge + 2Ff)2 − 4(egg − f 2)(EG − F2)

2(EG − F2)
(EQ 5.19)

The Gaussian curvature is defined as the product of k1 and k2; that is, k3 =
k1 × k2. The mean curvature k4 is simply (k1 + k2)/2. Peet and Sahota define
two other curvature measures, claimed to be better than k1 . . . k4:

k5 = (k2 − k1)
2

k6 = max(
∣∣k1

∣∣ ,
∣∣k2

∣∣) (EQ 5.20)

Finally, from the sign of the expression eg − f 2, we can determine whether
the point under consideration is a saddle point (<0), an elliptic point (>0) or a
parabolic point (=0). The number of such points in each image window might
provide some texture discrimination capability.

198 Chapter 5 ■ Texture and Color

There are nine texture measures based on this discussion of surface curva-
ture. Not all of these will be useful when applied to any particular image,
but they are useful tools to have available. The text.c program implements
each of these in the usual way; the algorithm names for the command line are:
k1, k2, k3, k4, k5, k6, elliptic, parabolic, and saddle. Thus, the call

text t3.pgm saddle

will compute the number of saddle points in each window and create an image
in which these values are the levels associated with each pixel. Figure 5.10
shows some of these measures applied to the test image.

(a) (b) (c)

(d) (e)

Figure 5.10: Surface curvature measures. (a) K5 measured on test image T5. (b) K6
measured on T5. (c) Elliptic points found in windows in image T1. (d) K6 measured on
T3. (e) Standard deviations of 13×13 windows of image (d).

5.7 Fractal Dimension

Fractal geometry can be used on occasion to discriminate between textures. The
word ‘‘fractal’’ is really more of an adjective than a noun, and it refers to entities
(especially sets of pixels) that display a degree of self-similarity at different
scales. A mathematical straight line displays a high degree of self-similarity;
any portion of the line is the same as any other, at any magnification.

Chapter 5 ■ Texture and Color 199

The fractal dimension D of a set of pixels I is specified by the relationship:

1 = NrD (EQ 5.21)

where the image I has been broken up into N non-overlapping copies of a
basic shape, each one scaled by a factor of r from the original. It might be
possible to measure D given a perfect synthetic image, but natural scenes with
textures will not contain exact replicas of the basic shape. What we want is an
estimate of D that can be calculated from a sampled raster representation. One
such algorithm is the Differential Box Counting (DBC) algorithm [Sark, 1992],
and another uses the Hurst coefficient [Russ, 1990]. Equation 5.21 can be
rewritten as

D = log N

log
(

1
r

) (EQ 5.22)

From this it can be seen that there is a log-log relationship between N and r.
If log(N) were plotted against log(r) the result should be a straight line whose
slope is approximately D.

The Hurst coefficient is an approximation that makes use of this relationship.
Consider Figure 5.11, in which a 7×7 pixel region is marked according to the
distance of each pixel from the central pixel. There are eight groups of pixels,
corresponding to the eight different distances that are possible. Within each
group the largest difference in grey level is found; this is the same as subtracting
the smallest grey level in the group from the largest.

Central pixel (d = 0)

Distance = 1

Distance = 2

Distance = 3Distance = √2

Distance = √5

Distance = √8

Distance = √10

Figure 5.11: A 7×7 region for calculating the Hurst coefficient of the central pixel. There
are eight classes of pixel, organized by their distance from the central pixel. The pixel at
d = 0 is not really a class by itself.

The central pixel is ignored, and a straight line is fit to the log of the
maximum difference (y coordinate) and the log of the distance from the central
pixel (x coordinate). The slope of this line is the Hurst coefficient, and replaces
the pixel at the center of the region.

200 Chapter 5 ■ Texture and Color

As an example, consider the following 7×7 pixel region of an image:

85 70 86 92 60 102 202

91 81 98 113 86 119 189

96 86 102 107 74 107 194

101 91 113 107 83 118 198

99 68 107 107 76 107 194

107 94 93 115 83 115 198

94 98 98 107 81 115 194

The first step in computing the Hurst coefficient is to determine the maximum
grey-level difference for each distance class of pixels. Starting at the pixels at
distance one or less from the center, the maximum level is 113 and the mini-
mum is 83, for a difference of 30. The next class has the range 113 − 74 = 39,
and the distance = 2 class has a range of 118 − 74 = 44.

Completing Table 5.1 gives:

Table 5.1: Hurst Coefficient Example Data

CLASS: d = 1 d = √
2 d = 2 d = √

5 d = √
8 d = 3 d = √

10

NUMBER: 30 39 44 50 51 130 138

A line to be fit to this data using a log-log relationship, so the next step is
to take the log of both the distance and the grey-level difference, as shown in
Table 5.2:

Table 5.2: Hurst Coefficient Calculation Data

LN(DISTANCE): 0.000 0.347 0.693 0.805 1.040 1.099 1.151

LN(DELTA G): 3.401 3.664 3.784 3.912 3.932 4.868 4.927

Now a straight line is fit to the points, using a least-squares approach. The
line in this case has the equation:

y = 1.145x + 3.229

The slope of this line, m = 1.145, is the Hurst coefficient. The graph of the raw
data and the fit line can be seen in Figure 5.12.

Chapter 5 ■ Texture and Color 201

log (distance)
0

5

4.5

4

3.5

0.5 1

lo
g

(g
re

y
le

ve
l)

Figure 5.12: The straight-line fit to the log (distance) vs. log (grey-level change) data for
the 7×7 region used as an example of the Hurst coefficient calculation. The slope of this
line is the Hurst coefficient.

Fractal dimension can be estimated using the text.c program as follows:

text tl.pgm fractal

The resulting image will be found in the file fractal.pgm.

5.8 Color Segmentation

The basic RGB color model used in most digital image formats is not especially
suitable for anything except image display. In particular, there are problems
in segmentation, when compared to the use of grey-level thresholds. Consider
that RGB values could be stored in a single computer word with eight bits of
the blue component in the bottom of the work, followed by eight bits of green,
and finally the red part. Any single threshold would really only cut one of the
color channels into two, leaving the others intact. Moreover, if one component,
let’s say blue, were at full intensity (255), then adding 1 to the pixel means
a vast change in color; there is now no blue and more green (numerically
similar colors can be quite different perceptually). Treating color as three
orthogonal coordinates seems a better idea, but the increased dimensionality
now complicates matters.

An idea that has been used with success is to reduce the number of colors to a
very few intense ones, colors that will be quite clearly distinct from each other.
The resulting image will look like a cartoon, with a few highly contrasting
colors. Each color can be given a distinct number or index, and each will

202 Chapter 5 ■ Texture and Color

represent a segmented region. The way the image looks is really moot, as the
goal is to identify these regions. This is called color quantization.

The simplest method for color quantization involves an a priori decision
about how many regions will be created. This is normally not acceptable, since
the number of regions or objects in the image is not known ahead of time.
However, this does allow a clear illustration of what color quantization is and
how it might be done. If the RGB values can be thought of as coordinates on
three axes, each running from 0 to 255. If each is divided into two parts at the
center (128) then eight volumes are created in this color space. Each of these
volumes could be represented graphically by the RGB coordinates (color) at
the center of the volume, meaning that there will be eight colors in total. All
pixels in an image can now be replaced by one of these eight prototype colors.
This method is called uniform quantization.

A pixel is an RGB vector in this scheme: Pij = (Rij, Gij, Bij). It is changed to
become equal to the nearest prototype color, where nearest can mean many
things but is usually Euclidean distance. So, the distance between Pij and all
prototype colors Qk = (Rk, Gk, Bk) is computed, and the Qk having smallest
distance replaces the color values in the pixel Pij. That is, we compute

dk =
√

(Rij − Rk)2 + (Gij + Gk)2 + (Bij + Bk)2

and choose prototype k for which d is a minimum.
Using eight colors was arbitrary, of course, and some images will need fewer,

some more. The method is also naive in that the volumes associated with the
prototype colors are the same, and are unconnected with the frequency of
appearance of actual colors in the image.

If the nature of the images is known in advance, it is possible to select colors
that would be especially useful for segmentation. For instance, the flower
image in Figure 5.13 has a bright yellow flower, some green foliage, white
twigs, and red berries. Selecting prototypes for each of these colors could lead
to better segmentation.

Figure 5.14 illustrates the use of hand-selected prototypes. This method can
be used in situations where the type of image is relatively stable in terms of
the objects within, and the colors are thus fairly consistent: visual inspection,
surveillance, and so on.

A better method would use the actual data in the image — the colors being
used — to determine what the prototype colors should be. The popularity
algorithm does just that. Based on the colors that actually occur in an image,
the algorithm chooses the N most common as prototype colors. This means
building a binned histogram of the frequency of occurrence of colors, and this
is often based initially on a fixed grid imposed on the color axes. For example,
use histogram bins that break each axis into 6 parts; this gives 6x6x6, or 216
bins. Each bin contains a range of 43 color values in one of the three channels.
Then N of these are chosen as prototypes, and each pixel is assigned the nearest
prototype color. N is selected based on the number of distinct object types that

Chapter 5 ■ Texture and Color 203

can be expected to appear in the image. The results, as shown in Figure 5.15,
are better than those from uniform quantization, but the images need further
processing if coherent regions are to be identified.

The median cut algorithm divides each color axis at the median color, and
can then repeat that process as often as wanted to give the desired number of
prototype colors. This method, too, uses colors that actually occur in the image
as a basis for building the prototypes.

Figure 5.13: (Top) Sample images for color quantization. Results of simple uniform
quantization.

(a) (b) (c)

Figure 5.14: The use of pre-selected color prototypes in uniform quantization. (a) Flower
segmented with yellow, green, red, and white. (b) Observatory segmented with blue, grey,
green, and brown. (c) Students segmented with black and flesh tone.

Figure 5.15: Images of Figure 5.13 after the popularity algorithm has been applied.

204 Chapter 5 ■ Texture and Color

The use of RGB works alright, but the nature of the colors in an image is really
contained in the hue information. Extracting and using the hue from an image
can be advantageous in color segmentation because the effect of intensity is
reduced. The OpenCV system can convert an image into hue/saturation/
intensity, or HSV, very easily through the cvCvtColor function

cvCvtColor(image1, image2, CV_BGR2HSV);

which converts image1, which is RGB, into image2, which is expressed in HSV.
All hue components can be extracted by the cvSplit function:

cvSplit(image, hue, sat, val, 0);

giving three images, one for each component of the pixels. The hue image can
be used for segmentation as if it were a set of grey levels.

As an example, consider the ‘‘students’’ image of Figure 5.13c. Converting
it into hue yields a complex grey-level image that needs further segmenting,
as shown in Figure 5.16a. However, after applying the popularity algorithm to
the hue image, recognizable regions appear, and if some smoothing is done
to reduce variation within regions, a clearly segmented image can be created
(Figure 5.16c). Smoothing over a greater area will result in larger homogeneous
regions.

(a) (b) (c)

Figure 5.16: (a) Hue component of Figure 5.13c. (b) Popularity algorithm applied to hue.
(c) Popularity applied to smoothed hue image.

There are a large number of philosophically diverse methods in the literature
for classifying color pixels. Most recently, a fuzzy C-means algorithm (a clus-
tering scheme) that uses an ‘‘ant colony’’ optimization scheme has yielded
some excellent results [Yu, 2010]. This work also illustrates a relatively recent
development in vision research - the use of standard image sets with ground
truth. Specifically, Yu’s group tested their method using the Berkeley Image
Segmentation Dataset [Martin, 2001]. A second example would be the Prague
texture database [Haindl, 2006]. The existence and use of data means that the

Chapter 5 ■ Texture and Color 205

results can be compared directly against any others based on that data set.
This is a great idea, because in the past results have been applied to whatever
images happened to be lying about or, worse, to whatever ones the method
happened to work best on.

5.9 Color Textures

Images of natural scenes are usually rich in texture and color. Combine this
with the fact that digital cameras are ubiquitous and are being used by many
of us to fill our hard drives with inexpensive color images, and the need to
include color and color textures in a segmenting scheme becomes obvious. But
how? Textures are complex, and color along is more difficult to deal with than
grey levels.

A key way do deal with color textures is to separate the problems of color
and texture. Look for color areas irrespective of texture, and use the techniques
discussed so far to look for texture in the hue image or the intensity (grey-level)
image, and then merge the two. At some level, all color texture segmentation
schemes do this.

For example, a practical system used for inspecting potato chips [Mendoza,
2007] applies entropy (Equation 5.8), contrast (Equation 5.6), energy and homo-
geneity (Equation 5.7) features to various color channels, such as intensity, hue,
and a* (a component of the CIELAB color coordinate system [McLaren, 1976])
in order to determine the quality class of a chip. Even the relatively well-known
blobworld scheme [Belongie, 1998] distinguishes explicitly between color and
texture features, and combines three of each in determining its segmentation.

The reason for separating color and texture is clear: Color is a property of a
single pixel, whereas texture is a property of a geometrically related collection
of pixels. Not only are the two things separable, but not separating them
results in a complexity due to high dimensionality that can be quite difficult
to deal with. Rarely is there an advantage to increasing the dimension of a
problem (although support vector machines are one such exception and will
be discussed Chapter 8, ‘‘Classification’’).

5.10 Website Files

fast.exe Fast texture code, command line

fast1.exe Fast texture code, OpenCV

206 Chapter 5 ■ Texture and Color

test1.exe Standard texture code, OpenCV

fast.c Source for fast texture library

fast1.c Source for fast OpenCV texture library

lib.c Source for image library

lib.h Image include file

popularity.c Popularity algorithm for color quantization

pupularity-hue.c Popularity on hue channel

text1.c Standard OpenCV texture library

text.c Standard command-line texture library

uniform.c Uniform color quantization

t1.pgm Test image, Figure 5.1a

t2.pgm Test image, Figure 5.1b

t3.pgm Test image, Figure 5.1c

t4.pgm Test image, Figure 5.1d

t5.pgm Test image, Figure 5.1e

5.11 References

Ashlock, D., D. Zheng, and J. L. Davidson. ‘‘Genetic Algorithms for Auto-
matic Texture Classification.’’ In Statistical and Stochastic Methods in Image
Processing II, Proceedings of SPIE 3167 (1997): 140–151.

Belongie, S., C. Carson, H. Greenspan and J. Malik. ‘‘Color and Texture-Based
Image Segmentation Using EM and Its Application to Content-based Image
Retrieval.’’ ICCV (1998): 675–682

Chabrier, S., C. Rosenberger, B. Emile and H. Laurent. ‘‘Optimization-Based
Image Segmentation by Genetic Algorithms.’’ EURASIP Journal on Image and
Video Processing (2008): 1–10.

Christoudias, C., B. Georgescu, and P. Meer. ‘‘Synergism in Low Level Vision.’’
Proceedings of the 16th ICPR 4 (August 2002): 150–155.

Cohen, P., C.T. LeDinh and V. Lacasse. ‘‘Classification of Natural Textures by
Means of Two Dimensional Masks.’’ IEEE Transactions on Acoustics, Speech,
and Signal Processing 37, no. 1 (1989): 125–128.

Deng, Y. and B. Manjunath. ‘‘Unsupervised Segmentation of Color-Texture
Regions in Images and Video.’’ IEEE PAMI 23, no. 8 (August 2001): 800–810.

Chapter 5 ■ Texture and Color 207

Derin, H. and W. S. Cole. ‘‘Segmentation of Textured Images Using Gibbs
Random Fields.’’ Computer Vision, Graphics, and Image Processing 35 (1986):
72–98.

Faugeras, O.D., ed. Fundamentals in Computer Vision. Cambridge: Cambridge
University Press, 1983.

Ferryanto, S. and A. Kolmogorov-Smirnov. ‘‘Type Statistic for Detecting Struc-
tural Changes of Textures.’’ Pattern Recognition Letters 16 (1995): 247–256.

Ganesan, L. and P. Bhattacharyya. ‘‘A New Statistical Approach for Micro
Texture Description.’’ Pattern Recognition Letters 16 (1995): 471–478.

Gong, M. and Yang, Y. H. ‘‘Genetic-based Multiresolution Color Image Seg-
mentation.’’ In VI’01, Vision Interface Conference (Ottawa, Ontario, Canada,
June 2001): 141–148.

Haindl, M. and Mikes, S. ‘‘Model-Based Texture Segmentation.’’ LNCS 3212
(2004): 306–313.

Haindl, M. and Mikes, S. ‘‘Unsupervised Texture Segmentation Using Multi-
Spectral Modelling Approach.’’ ICPR (2) 2006: 203–206.

Haralick, R. M. and L. G. Shapiro. Computer and Robot Vision. Reading:
Addison-Wesley, 1992.

Hsiao, J. Y. and A. A. Sawchuk. ‘‘Unsupervised Image Segmentation Using
Feature Smoothing and Probabalistic Relaxation Techniques.’’ Computer
Vision, Graphics, and Image Processing 48 (1989): 1–21.

Jin, X. C., S. H. Ong, and Jaysooriah. ‘‘A Practical Method for Estimating
Fractal Dimension.’’ Pattern Recognition Letters 16 (1995): 457–464.

Julesz, B. ‘‘Textons, the Elements of Texture Perception, and their Interactions.’’
Nature 290, no. 12 (1981): 91–97.

Laws, K. I. ‘‘Rapid Texture Identification.’’ SPIE Image Processing for Missile
Guidance (1980): 376–380.

Peet, F. G., and T. S. Sahota. ‘‘Surface Curvature as a Measure of Image
Texture.’’ IEEE Transactions on Pattern Analysis and Machine Intelligence
PAMI-7.6 (1985): 734–738.

McLaren, K. ‘‘The Development of the CIE 1976 (L*a*b*) Uniform Colour-Space
and Colour-Difference Formula.’’ Journal of the Society of Dyers and Colourists
92 (1976): 338–341.

Martin, D., C. Fowlkes, D. Tal, and J. Malik. ‘‘A Database of Human Seg-
mented Natural Images and Its Application to Evaluating Segmentation
Algorithms and Measuring Ecological Statistics.’’ Paper presented at the 8th
International Conference on Computer Vision, 2001: 416–423.

Mendoza, F., P. Dejmek, and J. Aguilera. ‘‘Colour and Image Texture Analysis
in Classification of Commercial Potato Chips.’’ Food Research International
40 (2007): 1146–1154.

Mikeš, S. and M. Haindl. ‘‘Prague Texture Segmentation Data Generator and
Benchmark.’’ ERCIM News 64 (2006): 67–68.

208 Chapter 5 ■ Texture and Color

Pratt, W. K. Digital Image Processing. 2nd ed. New York: John Wiley & Sons,
1991.

Rosenberger, C. and K. Chehdi. ‘‘Unsupervised Segmentation of Multi-Spectral
Images.,’’ Paper presented at the International Conference on Advanced
Concepts for Intelligent Vision Systems, Ghent, Belgium, September 2003.

Russ, J. C. ‘‘Surface Characterization: Fractal Dimensions, Hurst Coefficients,
and Frequency Transforms.’’ Journal of Computer Assisted Microscopy 2 (1990):
249–257.

Sarkar, N. and B. B. Chaudhuri. ‘‘An Efficient Differential Box Counting
Approach to Compute Fractal Dimension of Image.’’ IEEE Transactions on
Systems, Man, and Cybernetics 24 (1994): 115–120.

Strouthopoulos, C. and N. Papamarko. ‘‘Multithresholding of Mixed-Type
Documents.’’ Engineering Applications of Artificial Intelligence 13, no. 3 (2000):
323–343.

Tsai, C. M. and H. H. Lee. ‘‘Binarization of Color Document Images via
Luminance and Saturation Color Features.’’ IEEE Trans. Image Process IP-11
(April 2002): 434–451.

Unser, M. ‘‘Sum and Difference Histograms for Texture Classification.’’ IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-8 (1986):
118–125.

Yoshimura, M. and S. Oe. ‘‘Evolutionary Segmentation of Texture Using
Genetic Algorithms Towards Automatic Decision of Optimum Number of
Segmentation Areas.’’ Pattern Recognition 32, no. 12 (1999): 2041–2054.

Yu, Z., O. Au, R. Zou, W. Yu, and J. Tian. ‘‘An Adaptive Unsupervised
Approach Toward Pixel Clustering and Color Image Segmentation.’’ Pattern
Recognition 43 (2010): 1889–1906.

C H A P T E R

6

Thinning

6.1 What Is a Skeleton?

Everyone working in the computer vision field knows what thinning is:
it is what you do to produce the skeleton of an object, usually a bi-level
object. Reasonably enough, one might then ask, ‘‘What is a skeleton?’’ We
now venture into the realm of opinion because, as with texture, there is no
generally agreed-upon definition for what a skeleton is. Worse yet, and unlike
with texture, we may not know a skeleton when we see it. This is unfortunate,
because the generation of a digital skeleton is often one of the first processing
steps taken by a computer vision system when attempting to extract features
from an object in an image. A skeleton is presumed to represent the shape
of the object in a relatively small number of pixels, all of which are (in some
sense) structural and therefore necessary. In line images the skeleton conveys
all the information found in the original, wherein lies the value of the skeleton:
The position, orientation, and length of the line segments of the skeleton are
representative of those of the lines of which the image is composed. This
simplifies the task of characterizing the components of the line image.

Thinning, therefore, can be defined as the act of identifying those pixels
belonging to an object that are essential for communicating the object’s shape:
these are the skeletal pixels, and form a set. That no generally agreed-upon def-
inition of a digital skeleton exists has been pointed out by many people [Davis,
1981; Haralick, 1991] without altering the situation. Of the literally hundreds
of papers on the subject of thinning in print, the vast majority are concerned
with the implementation of a variation on an existing thinning method, where

209

210 Chapter 6 ■ Thinning

the novel aspects are related to the performance of the algorithm. Many of the
more recent thinning algorithms were designed with an eye on the clock:
The speed of the algorithm is improved, while often leaving the basic princi-
ples alone. The quality of the skeleton or the means by which it is found is
rarely the subject of analysis.

This chapter examines a number of approaches to thinning, and we will
always come back to the original issue of the definition without finding a
solution. However, three things can be stated in advance and should be kept
in mind:

1. Not all objects can or should be thinned. Thinning is useful for objects
consisting of lines, whether they are straight or curved, and is not useful
for objects having a shape that encloses a significant area. For example, a
circle can be thinned since it is represented by a curved line; a disk cannot
be meaningfully thinned.

2. What works as a skeleton in one situation may not work in all situations.
Thinning is usually one step in preparing an image for further processing.
The nature of the subsequent steps often dictates the properties needed
of the skeleton.

3. Thinning is the act of identifying the skeleton, and is not defined by the
algorithm used. In particular, thinning is not always an iterative process
of stripping away the outer layers of pixels.

6.2 The Medial Axis Transform

Possibly the first definition of a skeleton is that of [Blum, 1967] in defining
the medial axis function (MAF). The MAF treats all boundary pixels as point
sources of a wave front. Each of these pixels excites its neighbors with a delay
time proportional to distance, so that they, too, become part of the wave front.
The wave passes through each point only once, and when two waves meet
they cancel each other, producing a corner. The medial axis is the locus of the
corners, and forms the skeleton (Blum says line of symmetry) of the object.
The MAF uses both time and space information, and can be inverted to give
back the original picture. It is possible to implement this directly, but it is
difficult: What is needed is to convert the continuous transform to a discrete
one. This involves various approximations involving the distance function on
a discrete grid. This allows the MAF to be applied to a raster image, for which
the medial axis is not defined.

One way to find the medial axis is to use the boundary of the object. For any
point P in the object, locate the closest point on the boundary. If there is more
than one boundary point at the minimum distance, then P is on the medial

Chapter 6 ■ Thinning 211

axis. The set of all such points is the medial axis of the object. Unfortunately,
this must be done at a very high resolution, or Euclidean distances will not be
equal when they should be, and skeletal pixels will be missed.

An approximation to the medial axis on a sampled grid is more easily
obtained in two steps. First, compute the distance from each object pixel to the
nearest boundary pixel. This involves computing the distance to all boundary
pixels. Next, the Laplacian of the distance image is calculated, and pixels
having large values are thought to belong to the medial axis.

The way that distance is measured has an impact on the result, as shown in
Figure 6.1. The medial axis was found for a T-shaped object using Euclidean
distance, 4-distance, and 8-distance. 4-distance between pixels A and B is defined
to be the minimum number of horizontal and vertical moves needed to get
from A to B. 8-distance is the minimum number of pixel moves, in any of the
standard eight directions, needed to get from A to B. There are clear differences
in the medial axis depending on which way distance is calculated, but any of
them could be used as a skeleton.

(a) (b) (c)

Figure 6.1: The effect of the distance function on the medial axis. (a) Medial axis (above)
and skeleton (below) of the T-shaped object, using 4-distance. (b) Medial axis and
skeleton computed using 8-distance. (c) Computed using Euclidean distance.

The skeleton of the T produced by the medial axis does not have the same
shape as the T, nor does it need it. The main concern is whether the skeleton
characterizes the basic shape of the object somehow. On the other hand, a
simple example exposes a fundamental problem with the medial axis as a

212 Chapter 6 ■ Thinning

skeleton. Most people would agree that the skeletons of two objects that are
similar to each other should, in turn, be similar. Figure 6.2 shows an object that
differs from Figure 6.1a in only a single pixel; the medial axes of these objects,
on the other hand, differ substantially.

(a) (b)

Figure 6.2: A single pixel difference between two objects can create a large difference in
their skeletons. (a) The T-shaped object, but with one less black pixel. (b) The skeleton of
the new object, quite different from those in Figure 6.1.

Most vision researchers would agree that the way the MAF is applied to
discrete, raster images often does not yield an ideal skeleton, and takes too
long to compute. It does, however, form the basis of a great many thinning
methods, and in that regard is a very important concept.

6.3 Iterative Morphological Methods

The majority of thinning algorithms are based on a repeated stripping away
of layers of pixels until no more layers can be removed. A set of rules defines
which pixels can be removed, and some sort of template-matching scheme
frequently is used to implement these rules. Often, the rules are designed so
that it is easy to tell when to stop: when no change occurs after two consecutive
passes through the image.

The first such algorithm to be described [Stentiford, 1983] is typical of the
genre. It uses 3×3 templates, where a match of the template in the image
means to delete (set to white) the center pixel. The basic algorithm is:

1. Find a pixel location (i,j) where the pixels in the image I match those in
template M1 (Figure 6.3a).

2. If the central pixel is not an endpoint, and has connectivity number = 1, then
mark this pixel for later deletion.

3. Repeat steps 1 and 2 for all pixel locations matching the template M1.

4. Repeat steps 1–3 for the remaining templates in turn: M2, M3, and M4.

Chapter 6 ■ Thinning 213

5. If any pixels have been marked for deletion, then delete them by setting
them to white.

6. If any pixels were deleted in step 5, then repeat the entire process from
step 1; otherwise, stop.

(a) (b) (c) (d)

Figure 6.3: Templates for identifying pixels that can be deleted in the Stentiford thinning
algorithm. (a) Template M1. (b) Template M2. (c) Template M3. (d) Template M4. The
specified black and white pixels in the templates must correspond to pixels of an identical
color in the image; the Xs indicate places where we don’t care what color the image pixel is.

The image must be scanned for a template match in a particular order for
each template. The purpose of template M1 is to find removable pixels along
the top edge of an object, and we search for a match from left to right, then
from top to bottom. M2 will match a pixel on the left side of an object;
this template moves from the bottom to the top of the image, left to right.
M3 will locate pixels along the bottom edge, and moves from right to left,
bottom to top. Finally, to find pixels on the right side of an object, match
template M4 in a top-to-bottom, right-to-left fashion. This specific order and
direction for applying the templates ensures that the pixels will be removed
in a symmetrical way, without any significant directional bias.

There are still two issues to be resolved, both from step 2. A pixel is an
endpoint if it is connected to just one other pixel; that is, if a black pixel has
only one black neighbor out of the eight possible neighbors. If endpoints were
to be deleted, then any straight lines and open curves would be removed
completely, rather like opening a zipper.

The concept of a connectivity number is somewhat more challenging.
Because we are using only very small parts of an image, the role of that image
segment in the overall picture is not clear. Sometimes a single pixel connects
two much larger sections of an object, and it is intuitively obvious that such a
pixel cannot be removed. To do so would create two objects where there was
originally only one. A connectivity number is a measure of how many objects
a particular pixel might connect.

214 Chapter 6 ■ Thinning

One such connectivity measure, as shown in Figure 6.4, is [Yokoi, 1973]:

Cn =
∑
k ∈ S

Nk − (Nk · Nk + 1 · Nk + 2) (EQ 6.1)

Where Nk is the color value of one of the eight neighbors of the pixel
involved, and S= {1, 3, 5, 7}. N1 is the color value of pixel to the right of
the central pixel, and they are numbered in counterclockwise order around
the center. The value of Nk is one if the pixel is white (background) and
zero if black (object). The center pixel is N0, and Nk = Nk − 8 if k > 8. Another
way that connectivity can be computed is by visiting the neighbors in the
order N1, N2 . . . N8, N1. The number of color changes (black–white) counts the
number of regions the central pixel connects.

(a) (b)

(c) (d) (e)

Figure 6.4: An illustration of the connectivity number. (a) The central pixel does not
connect any regions and can be removed. Connectivity number = 1. (b) If the central pixel
were to be deleted, then the left and right halves could become disconnected. Connectivity
number = 2. (c) Connectivity = 3. (d) Connectivity = 4, the maximum. (e) Connectivity = 0.

Figure 6.5 shows one iteration (the first) of this thinning algorithm applied
to the T-shaped object of Figure 6.1. One iteration includes one pass for each
of the four templates. The black pixels are those marked for deletion, and it is
clear from the figure exactly what each template accomplishes. Each complete
iteration effectively erodes a layer of pixels from the outside of the object, but
unlike standard morphological erosion, the deletion of a pixel is contingent
upon meeting the endpoint and connectedness constraints.

Chapter 6 ■ Thinning 215

(a) (b) (c) (d)

Figure 6.5: The four parts of each iteration of the Stentiford thinning method. (a) After
applying template M1. (b) After M2. (c) After M3. (d) After M4. In each case, the black
pixels represent those to be deleted in this iteration.

Complete thinning of this object requires 13 iterations (counting the final
iteration, which does nothing except show that we are finished). Figure 6.6
shows the resulting image after each iteration. One iteration makes four passes
through the image, which in this case is 60×60 pixels, or 3600 pixels. Thus,
187,000 pixels were examined in order to thin this simple image. It gets worse:
Each template application looks at three pixels (the maximum is 561,600), and
each time a template match occurs, another 18 pixels are looked at (the upper
limit is 10,108,800 pixels, but will be a fraction of that in practice). Finally,
there will be one extra pass of each iteration to delete the marked pixels
(10,152,000). This is an expensive way to thin a small image, but is quite typical
of template-based mark-and-delete algorithms.

A few classic problems with this thinning algorithm show up as artifacts in
the skeleton. They are classic because they tend to appear in a great variety of
algorithms of this type, and researchers in the area have learned to anticipate
them. The first of these is called necking, in which a narrow point at the
intersection of two lines is stretched into a small line segment (Figure 6.7a).
Tails can be created where none exist because of excess thinning where two
lines meet at an acute angle (Figure 6.7b). Finally, and perhaps most commonly,
is the creation of extra line segments joining a real skeletal segment; this has
been called a spurious projection, hairs, or line fuzz (Figure 6.7c).

Stentiford suggests a preprocessing stage to minimize these thinning arti-
facts. Since line fuzz is frequently caused by small irregularities in the object
outline, a smoothing step is suggested before thinning to remove them. Basi-
cally, a pass is made over all pixels, deleting those having two or fewer black
neighbors and having a connectivity number less than two.

For dealing with necking, he suggests a procedure called acute angle emphasis,
in which pixels near the joint between two lines are set to white if they ‘‘plug
up’’ an acute angle. This is done using the templates shown in Figure 6.8.
A match to any template marks the central pixel for deletion, and causes
another iteration of less severe acute angle emphasis using only the first three

216 Chapter 6 ■ Thinning

templates of each type. If any pixels were deleted, one last pass using only the
first templates of each type is performed.

Original image Iteration 1 Iteration 2

Iteration 3 Iteration 4 Iteration 5 Iteration 6

Iteration 7 Iteration 8 Iteration 9 Iteration 10

Iteration 11 Iteration 12 Iteration 13

Figure 6.6: All iterations of the Stentiford thinning algorithm applied to the T . The last
two iterations are the same, since one extra pass is needed to ensure that the skeleton is
complete.

Smoothing is done first, followed by all passes of acute angle emphasis,
followed finally by the thinning steps. Figure 6.9 shows the final skeletons of
the characters from Figure 6.7 when the preprocessing steps are included.

As good as these skeletons appear to be, the method is still flawed. The
use of three stages of acute angle emphasis will not be sufficient for very
thick characters, and the templates do not match all situations that can cause

Chapter 6 ■ Thinning 217

necking and tailing. Also, the smoothing step will not catch all irregularities
that can cause line fuzz. Still, perfection should not be expected, and the
method does pretty well, particularly as a preprocessing step for character
recognition.

(a) (b)

(c)

Figure 6.7: Classic thinning artifacts. (a) Necking. (b) Tailing. (c) Spurious projection
(line fuzz).

D1 D2 D3 D4 D5

U1 U2 U3 U4 U5

Figure 6.8: Templates used for the acute angle emphasis preprocessing step.

One thinning algorithm that seems to be in everybody’s toolkit is the
Zhang-Suen [Zhang, 1984] algorithm. It has been used as a basis of comparison

218 Chapter 6 ■ Thinning

for thinning methods for many years, and is fast and simple to implement.
It is a parallel method, meaning that the new value for any pixel can be
computed using only the values known from the previous iteration. Therefore,
if a computer having one CPU per pixel were available, it could determine the
entire next iteration simultaneously. Since most of us don’t have a computer
of that size, let’s consider only the version of the program that uses one CPU.

(a) (b) (c)

Figure 6.9: Final thinned characters, after both preprocessing steps and thinning.

The algorithm is broken up into two subiterations instead of, for example,
the four subiterations of the Stentiford method. In one subiteration, a pixel I(i,j)
is deleted (or marked for deletion) if the following four conditions are all true:

1. Its connectivity number is one (1).

2. It has at least two black neighbors and not more than six.

3. At least one of I(i, j + 1), I(i − 1, j) and I(i, j − 1) are background (white).

4. At least one of I(i − 1, j), I(i + 1, j) and I(i, j − 1) are background.

At the end of this subiteration the marked pixels are deleted. The next
subiteration is the same except for steps 3 and 4:

1. At least one of I(i − 1, j), I(i, j + 1) and I(i + 1, j) are background.

2. At least one of I(i, j + 1), I(i + 1, j) and I(i, j − 1) are background.

and again, any marked pixels are deleted. If at the end of either subiteration
there are no pixels to be deleted, then the skeleton is complete, and the program
stops.

Figure 6.10 shows the skeletons found by the Zhang-Suen algorithm applied
to the four example images shown so far: the T, X, V, and 8. The T skeleton
is exceptionally good, and the V skeleton does not show any signs of tailing.
The X skeleton does still show necking, and the 8 skeleton still has line
fuzz. The preprocessing steps suggested by Stentiford may clear this up.

Before trying this, an improvement of the algorithm was suggested
[Holt, 1987] that is faster and does not involve subiterations. First, the two

Chapter 6 ■ Thinning 219

subiterations are written as logical expressions which use the 3×3 neighbor-
hood about the pixel concerned. The first subiteration above can be written as:

v(C) ∧ (∼edge(C) ∨ (v(E) ∧ v(S) ∧ (v(N) ∨ v(W)))) (EQ 6.2)

which is the condition under which the center pixel C survives the first
subiteration. The v function gives the value of the pixel (1 = true for an object
pixel, 0 = false for background), and the edge function is true if C is on the edge
of the object — this corresponds to having between two and six neighbors and
connectivity number = 1. The letters E, S, N, and W correspond to pixels in
a particular direction from the center pixel C; E means east (as in I(i,j+1)) S
means south (as in I(i+1,j)) and so on.

Figure 6.10: The skeletons produced by the standard Zhang-Suen thinning algorithm
when applied to the test images of Figure 6.2 and 6.7.

The second subiteration would be written as:

v(C) ∧ (∼edge(C) ∨ (v(W) ∧ v(N) ∧ (v(S) ∨ v(E)))) (EQ 6.3)

Holt et al. combined the two expressions for survival (Eqs. 6.2 and 6.3) with a
connectedness-preserving condition (needed for parallel execution) and came
up with the following single expression for pixel survival:

v(C) ∧ (∼edge(C) ∨
(edge(E) ∧ v(N) ∧ v(S)) ∨
(edge(S) ∧ v(W) ∧ v(E)) ∨
(edge(E) ∧ edge(SE) ∧ edge(S))

(EQ 6.4)

This expression is not a daunting as it appears; the v functions are simply
pixel values, and the edge function is just about as complex as the connectivity
function used in the Stentiford algorithm. The results from this are good, but
not identical to the standard Zhang-Suen. However, there is still more to come.

Sometimes, when thinning is complete, there are still pixels that could be
deleted. Principal among these are pixels that form a staircase; clearly half
of the pixels in a staircase could be removed without affecting the shape or

220 Chapter 6 ■ Thinning

connectedness of the overall object. Basically, the central pixel in one of the
following windows can be deleted:

0 1 x
1 1 x
x x 0

x 1 0
x 1 1
0 x x

0 x x
x 1 1
x 1 0

x x 0
1 1 x
0 1 x

To avoid creating a new hole, we simply add a condition that one of the x
values be 0. For windows having a northward bias (the first two above) the
expression for survival of a pixel in the staircase-removal iteration is:

v(C) ∧ ∼ (v(N) ∧
((v(E) ∧ ∼ v(NE) ∧ ∼ v(SW) ∧ (∼ v(W) ∨ ∼ v(S)) ∨
(v(W) ∧ ∼ v(NW) ∧ ∼ v(SE) ∧ (∼ v(E) ∨ ∼ (S))))))

(EQ 6.5)

The pass having a southward bias is the same, but with north and south
exchanged. None of the example images shown so far possess any significant
amount of staircasing, but the image introduced in Figure 6.11 does. The
version thinned using staircase removal seems more smooth and symmetrical
than the other skeletons. Figure 6.12 shows the result of applying this method
to the four test images we have been using. The basic problems are still present;
in fact, this method does not deal with tails as well as the standard Zhang-Suen
method, and the T skeleton is not as good.

(a) (b) (c) (d)

Figure 6.11: Variations on the Zhang-Suen thinning algorithm. (a) Original image (b)
Thinned using the standard algorithm. (c) Thinned using Holt’s variation. (d) Holt’s
variation plus staircase removal.

Figure 6.12: Results from Holt’s algorithm with staircase removal applied to the standard
test images.

Chapter 6 ■ Thinning 221

If simple speed is what is of importance, then the Holt variation of
Zhang-Suen is the better of the methods shown so far. On the other hand, if
the quality of the skeleton is of prime importance, it is probable that a merging
of the three methods is in order: Stentiford’s preprocessing scheme feeding
images into Zhang-Suen’s basic algorithm, with Holt’s staircase removal as a
post-processor. The code for this sequence of operations appears in Section 6.8,
since it includes all the techniques of importance that have been discussed
to this point. It is available on the accompanying website as the program
zhangsuenbest.c, and does appear to generate the best skeletons of all the
methods shown so far; of course, this is a subjective measure. Figure 6.13
shows the best skeletons.

Figure 6.13: Skeletons obtained from using the Stentiford preprocessing steps combined
with the Zhang-Suen thinning algorithm and Holt’s staircase-elimination procedure.

6.4 The Use of Contours

The iterative mark-and-delete methods discussed so far have in common that
they always delete pixels from the outer layer. These are on the boundary
of the object, and form a contour having a distance of zero pixels from the
background. A contour-based method locates the entire outer contour, or even
all contours, and then deletes the pixels on the contour except those needed for
connectivity. These methods tend not to use 3×3 templates for locating pixels
to be removed.

The essential scheme used by a contour-based thinning algorithm is:

1. Locate the contour pixels.

2. Identify pixels on the contour that cannot be removed.

3. Remove all contour pixels but those in step 2.

4. If any pixels were removed in step 3, then repeat from step 1.

The external contour is usually traced in a manner identical to that used
when finding the chain code. Starting at any black pixel having a horizontal
or vertical neighbor in the background (a boundary pixel), the pixels on the
contour are visited or traced in a counterclockwise fashion until the starting

222 Chapter 6 ■ Thinning

pixel is seen again. The pixels are saved in a list when visited, giving a fast
way to revisit them later. Then the contour pixels are marked somehow and
the process is repeated, in order to find internal contours such as would occur
around a hole in the object, until no starting pixels remain.

After the contour has been identified, the contour pixels that must not be
removed can be located. One way to do this uses the concept of a multiple pixel
[Pavlidis, 1982]. There are three types of multiple pixel, none of which can be
safely removed from a contour.

The first type (as shown in Figure 6.14a) appears more than once in the
list of contour pixels. The reason for this is that there is no way to get from
one part of the object to the other without passing through the multiple
pixel, so deleting this pixel would separate the two parts. It is this type of
pixel for which the phrase multiple pixel was named.

The second type of multiple pixel has no neighbors in the interior of the
object; that is, all its object neighbors belong to the contour (Figure 6.14b).
This could only occur if the pixel involved stuck out from the boundary;
perhaps it is the endpoint of a line, for example. Line endpoints clearly
cannot be deleted either.

The third type of multiple pixel has a neighbor that is on the contour but
that is not its immediate successor or predecessor. This can occur when the
contour turns back on itself, or when an internal and an external contour
meet and parallel each other, as in Figure 6.14c. To delete such pixels
would create the possibility that two-pixel-wide lines would simply be
removed, which is unacceptable.

(a) (b)

1 2

3

3

(c)

Figure 6.14: Multiple pixels. (a) The pixel marked 1 is a multiple pixel because it is visited
twice in one complete traversal of the contour. (b) The pixel marked 2 is a multiple pixel
because it has no neighbors that are not contour pixels (no internal neighbors). (c) The
pixels marked 3 are multiple pixels because they are neighbors of each other, but do not
occur immediately before or after each other in the list of contour pixels. They belong to
different parts of the same contour in this case.

Chapter 6 ■ Thinning 223

The three types of multiple pixels are easy to identify using a pass through
the contour, marking the pixels and checking the three conditions. They are
marked as nonremovable, and then all other contour pixels are set to the
background level. Contours are marked, checked, and deleted until no further
change takes place.

There are a few problems with the algorithm as presented so far, the
most serious of which is that the skeletons obtained are two pixels thick
in many places; this is due to multiple pixels of type 3 being neighbors,
but not removable. The fix is to add another pass through the thinned
image, removing all pixels on a right-angle corner [Zhang, 1984], as shown in
Figure 6.15a. Since it was useful before, a pass of Holt’s staircase removal was
added as well.

Another problem is caused by the tracing of the contours. Some tracers
(including Pavlidis’s) will trace a tiny contour in locations where an external
and internal contour pass close to each other (see Figure 6.15b). Rather than
rewrite the tracer, the program was modified to ignore contours having four or
fewer pixels. This may have ramifications if the image is supposed to contain
a number of one-pixel holes.

(a)

(b)

Figure 6.15: Problems with contour thinning. (a) Two-pixel-wide lines should be thinned
further — in this case, by deleting those pixels on the corner of a right angle. (b) Some
situations can result in a spurious contour; one cure is to forbid very small contours.

The resulting skeletons suffer from artifacts, especially tailing. The prepro-
cessing methods do not help a great deal, but the smoothing procedure from

224 Chapter 6 ■ Thinning

Stentiford does limit the fuzz, and so was added. The skeletons generated by
this system for the four test images can be seen in Figure 6.16. If these do not
appear to be better than those of Figure 6.13, remember that the advantage
of the contour methods is supposed to be speed. For example, a more recent
contour-based algorithm [Kwok, 1989] claims execution speeds that are 10–20
times faster than Zhang-Suen, but no quality comparisons are available.

Figure 6.16: The result of using contour-based thinning. Each of the four test images has
been thinned by repeatedly stripping away contours, while leaving the multiple pixels
behind. Double lines were removed after the fact (Figure 6.15), and staircases were
removed. The smoothing pass described by Stentiford was done before thinning was
attempted.

6.4.1 Choi/Lam/Siu Algorithm
Some of the early work on thinning considered that skeletal pixels could be
thought of as the centers of consecutive circles that were tangent to the outline
(contour) of the object being thinned. Indeed, this is true; circles can be drawn
inside of thick lines that touch both side of the line and contain only object
pixels. If such a circle is moved along the line, adjusting the radius to fit, it
can remain in contact with both sides, and the center of the circles forms a
line or curve that is skeletal. The problem is that this really only works well
for continuous circles. Digital objects have jagged boundaries, thick edges,
and quantized features, so it is impossible to accomplish what has just been
described.

[Choi, 2003] suggests that it is possible to characterize skeletal pixels by
considering that they are the locus of a sequence of circle centers and by
considering connectivity and geometry. With this in mind, note that skeletal
pixels tend to be associated with two or more minimal distance boundary
points, as exemplified by the points Q1 and Q2 in Figure 6.17a. These points
can be thought to divide the object boundary into two parts, part A from Q
clockwise to Q2, and part B, clockwise from Q2 to Q1. From these definitions
and from basic geometry can be derived an astonishing property: If a point
exists along part A outside of the circle centered at P having a distance greater
than a specified value d, and another lies on part B, also greater than distance
d from P, then P is a skeletal pixel.

The thinning algorithm works by testing all object pixels to determine if
they are skeletal, rather than by stripping away successive contours. For a

Chapter 6 ■ Thinning 225

candidate pixel, P, determine the nearest contour pixel, Q. This is done in
an especially clever way using the signed sequential Euclidean distance (SSED)
transform — a distance map in which the X and Y directions to the nearest
boundary are kept, not just the distance. Thus, each element in the distance
map is a vector, v, and P + v is the nearest boundary pixel for any object
pixel, P.

The SSED transform is tricky to implement. The website provides an
example, choi.c , but the original article [Ye, 1988] describes a faster albeit more
obscure version. Figure 6.17b shows an example of this distance transform
applied to a simple image.

(a) (b)

(c)

Figure 6.17: Using the SSED transform to thin a character. (a) Basic definitions
surrounding the use of a disk and simple geometry in thinning. (b) The SSED image for a
simple rectangle with one pixel cut out of the boundary. The numbers represent the x and
y distance to the nearest boundary pixel. (c) The result of applying this method to a digit
‘‘5’’ for three values of the distance parameter d.

A thinning method based on these ideas is: Compute the SSED = Id for the
target image I.

1. For each object pixel P = (Px,Py) in the image which is not on the
boundary:

a. Find the point Q on the boundary which is closest to P. Do this by
adding the coordinates of P to those of Id[Px, Py]. That is:

Qx = Px + Idx[Px, Py]

Qy = Py + Idy[Px, Py]

where Id[x, y] is a vector = (Idx[x, y], Idy[x, y])

226 Chapter 6 ■ Thinning

b. Find the nearest boundary pixel to each of the eight neighbors of P.
Call these Qi.

2. For i = 1 . . . 8:

a. Check the distance value |Qi − Q|2 for to ensure that it is greater than
d. If not, reject Qi. Resume from B. Here |x| represents the Euclidean
norm, and so |x|2 is the norm squared. This means we avoid computing
the square root.

b. Find the vector difference dQ = Qi − Q, and let z be the value of
maximum coordinate in dQ; that is the max of dQx and dQy.

c. If |Qi|2 − |Q|2 ≤ z, mark Qi as skeletal.

3. Repeat from step 1.

This method was applied to a digit ‘‘5’’ and the results are shown in
Figure 6.17c. The value selected for d is important to the method, and this
is unfortunate in general, as it may be hard to determine what d should be.
Small values of d result in multiple branches and stems. Larger values reduce
this effect, but very large values result in a disconnected skeleton. It may be
possible to determine a good value of d from the average width of the object.

The method produces generally disappointing skeletons but has some inter-
esting features. The use of the SSED transform in this thinning algorithm sug-
gests other places where this type of distance map might be useful. The use of
the parameter d can be seen as a curse, in that an estimate is needed in advance,
but also a blessing, in that it could be used to ‘‘tune’’ the skeletons as desired.

6.5 Treating the Object as a Polygon

Instead of being treated as a raster object, the boundary of a region can be
made into a polygon. The contour-based methods begin this way, since a
chain code is really a representation of a polygon, but then fall into old habits
and discard successive contours (polygons) until the skeleton remains. An
interesting approach [Martinez-Perez, 1987] uses geometric properties of the
polygon that represents the object boundary to locate the skeleton.

The first step is to obtain the boundary of the object represented as a polygon.
This could be done with a chain code, creating many small polygon edges: one
edge per pair of pixels. It would be better to convert the boundary into vector
form, where each edge in the polygon was stored as its starting and ending
pixel coordinates. The resulting polygon should be stored in counterclockwise
order so that moving from one vertex to the other is a simple matter. It should
be pointed out that vectorizing the boundary is not an easy thing to do.

Figure 6.18 shows a contrived test image as a set of vectors in polygon order.
Now the nodes are traversed, and one of two things is done. If the angle made

Chapter 6 ■ Thinning 227

by the node (and its previous and next points) is less than 180 degrees, then the
angular bisector is constructed from the node to the point where the bisector
meets the opposite face on the polygon; in Figure 6.18, this was done in the
case of node 2. Otherwise, the line normal to both the incoming and outgoing
edges is drawn to the point where it intersects the polygon; this has been done
for nodes numbered 4 and 9, for example.

(a) (b)

Figure 6.18: Treating the object as a polygon. (a) Some of the projecting lines computed
for a hypothetical object. (b) The centers of the lines are points on the skeleton, which has
been traced here as the thick black line.

Now, starting at vertex 1, the path through the midpoints of the line segments
constructed in the previous step forms the skeleton. The tracing process is also
not easy to implement, but on the face of it the skeleton should be a good
one. There are some idiosyncracies (such as the possible formation of a loop
in a thick corner, and the fact that the first skeletal segment starts in a corner,
rather than at the middle of an edge).

This algorithm is intended for thinning objects that are not very thick to
begin with. Characters would be included in the set of such objects, as would
graphs and many maps. It is included here as an alternative strategy that shows
potential, and one that has not been explored to the extent that it should.

6.5.1 Triangulation Methods
The previous method broke a polygon, representing an arbitrary shape to
be thinned, into other, simpler, polygons that were easier to deal with. In
computer graphics, triangulation is the act of taking an arbitrary polygon and
converting it into triangles, which are faster to draw and shade, and generally
easier to manipulate in graphics applications. The triangles do not overlap
and fully tile the original polygon. Why is this interesting? Because these
triangles can help find a skeleton of the original polygon. As all raster objects
are essentially polygons, the adjacent pixels in the boundary can be connected,
creating line segments; therefore, a polygon triangulation can be a key step in
thinning because, as before, the midpoints of the triangles comprise a skeleton.

228 Chapter 6 ■ Thinning

Many triangulation-based schemes exist (e.g., [Morrison, 2006; Melhi, 2001;
Zou, 2001; Ogniewicz, 1995]). The details vary, but they are all based on the
same basic scheme:

1. Identify points on the object outline to be used in triangulation.

2. Construct a triangulation of the outline.

3. Collect the midpoints of the triangle segments and connect them with
line segments, creating a skeleton.

Of these three steps, the first step most determines the success of the
procedure. Using every boundary pixel can work, but the triangulation step
is unstable and the triangles are very small. Zou uses line segment endpoints
on one side of the contour and a contour point on the other side, resulting in
a narrow triangle. Morrison seems to construct contours from the boundary
and start at the beginning of the contour. It is also possible to collect co-linear
boundary pixels into sets, each corresponding to a straight line segment, and
then to use the segment endpoints as a basis for triangulation. Once the starting
point is found, the triangulation algorithms are well defined, although not
all triangulation algorithms can deal with holes in the object. A good place
to start in an implementation is the many websites about discrete geometry.
The triangulation program at www.cs.unc.edu/~dm/CODE/GEM/chapter.html,
described in Graphics Gems, is accessible

The starting point is important, too. Starting at the end of a linear stroke can
present difficulties, and finding a point nearer the center is more work. Con-
tinuous contours can be extracted from the digital boundaries, and this makes
the choice easier. Figure 6.19 shows a generic outline of a triangulation-based
procedure.

(a) (b)

Figure 6.19: (a) A discrete outline of a naive triangulation. The skeleton is the line
joining the centers of the triangle sides. (b) Using boundary pixel sets that correspond
to straight line segments results in bigger triangles and fewer of them, but a similar skeleton.

6.6 Force-Based Thinning

Up to this point, the elements implicit to definitions of skeleton include:

Skeletal pixels are in some sense as far from the object boundaries as
possible.

Chapter 6 ■ Thinning 229

A skeletal pixel is connected to at least one other, unless the skeleton
consists of exactly one pixel.

A line crossing the object boundary as a perpendicular will cross the
skeleton exactly once before crossing another boundary, unless it is (a)
too close to a point where lines meet, or (b) too close to the end of a line.

As an example, a simple object and its human-computed skeleton are shown
in Figure 6.20a, where grey represents a boundary pixel and a black pixel is
a skeletal pixel. The skeleton above satisfies all the discussed properties, and
while a six-year-old human could draw it, there are very few (if any) thinning
algorithms that could. In most cases, humans perform thinning by computing
a medial axis in a preferred direction. The center pixel found by slicing the
object perpendicular to the stroke is chosen as skeletal wherever possible. This
produces Figure 6.20b, which is purely computational.

There is also a perceptual aspect, which involves closing the gaps in the
skeleton and extending the lines to the ends. This aspect can perhaps only
be approximated on a computer. The direction in which to slice the object
is that direction which is perpendicular to the stroke, and this may not be
perpendicular to the boundary at all points. Nonlocal information is needed to
perform this operation properly. In computer vision applications the skeleton
of an object is extracted, and used to locate strokes. What is being proposed
here is to reverse this process: Strokes are located and used to generate the
skeletons.

(a) (b)

Slice Slice

Figure 6.20: (a) A simple figure to be thinned. The human-generated skeleton is
composed of the black pixels. (b) Slicing the figure in a direction normal to the boundary
gives the bulk of the skeleton.

6.6.1 Definitions
A digital band can be defined as a set of connected pixels with the following
properties:

All pixels lie within perpendicular distance d of a discrete curve C, which
does not have any loops (i.e., is simple). The minimum distance between
C and any boundary pixel is d/2.

230 Chapter 6 ■ Thinning

The value of d is much smaller than the length of the curve C.

The direction associated with each boundary pixel is approximately the
same as that of the nearest point on C.

This definition would include most digital lines and curves, either thick
or thin, as digital bands. A digital band segment is a subset of a digital band
obtained by slicing the band at two places in a direction perpendicular to C at
those places. This relaxes property two above so that the length of the curve C
over the segment must be simply greater than 2d.

A stub is a digital band segment where there are constraints placed on the
changes in direction undergone by C. In particular, over the segment: (1) the
direction may be constant (linear stub), or (2) the direction may represent
either a convex or concave curve (but not both), having an identifiable (if
approximate) center and radius of curvature. Finally, the skeleton of a stub is the
set of pixels obtained by using the center pixel of each slice across the stroke
in a direction perpendicular to C. For example, in the case of a linear stroke,
these pixels should comprise the principal axis.

Now the approach to skeletonization can be clarified. Given a line image
to be thinned, it can be broken down into a set of stubs that have been
concatenated so that their boundaries form a continuous digital curve. These
each have a clearly defined skeleton, and the first draft of the overall skeleton
(the skeletal sketch) is simply the collected skeletons of all the stubs.

The skeleton may be complete at this point, although it is unlikely. The
problem is that it is not possible to accurately determine the stubs comprising
the object — some stubs are too short for this given that the image is discrete.
It is often possible to fit hundreds of different stub combinations to a given
object.

6.6.2 Use of a Force Field
The goal here is to find a method for locating skeletal pixels in a digital
band that will also be useful as an approximation for objects consisting of
concatenated band segments. Our idea is to have all the background pixels
that are adjacent to the boundary act as if they exerted a 1/r2 force on the
object pixels. The skeletal pixels will lie in areas having the ridges of this force
field, and these areas can be located by finding where the directions of the
force vectors change significantly.

The algorithm first locates the background pixels having at least one object
pixel as a neighbor and marks them. These will be assumed to exert a repulsive
‘‘force’’ on all object pixels: The nearer the object pixel is to the boundary, the
greater is the force acting on it. This force field is mapped by subdividing the
region into small squares and determining the force acting on the vertices of
the squares. The skeleton lies within those squares where the forces acting

Chapter 6 ■ Thinning 231

on the corners act in opposite directions. Those squares containing skeletal
areas are further subdivided, and the location of the skeletal area is recursively
refined as far as necessary or possible.

The change in the direction of the force is found by computing the dot
product of each pair of force vectors on corners of the square regions:

d1 = f̂1 · f̂2

d2 = f̂2 · f̂3

d3 = f̂1 · f̂4

(EQ 6.6)

If any one of d1, d2, or d3 is negative, then the region involved contains some
skeletal area.

To compute the force vector at each pixel location is time-consuming. For
each object pixel, a straight line is drawn to all marked pixels on the object
outline. Lines passing through the background are discarded, as illustrated
in Figure 6.21, and for each of the remaining lines a vector with length 1/r2

and direction from the outline pixel to the object pixel is added to the force
vector at that pixel. A graphical illustration of the force calculation is given in
Figure 6.22.

This is done for all object pixels; then recursive subdivision can be used to
refine the positions of the skeletal areas. From any endpoints of the skeleton
found in the previous stage, we consider growing this skeletal line until it hits
another skeleton or an edge. If it hits itself, the loop grown thereby is deleted.

(a)

Pixels exerting a force

“Invisible” pixels

Object pixels

Pixel under consideration

(b)

f4

f1 f2

f3

Figure 6.21: (a) When computing the force at a pixel, only the ‘‘visible’’ pixels are
considered. The object insulates the others from having an influence. (b) The calculation
of the dot product determines whether the force becomes zero somewhere in the pixel
being tested.

232 Chapter 6 ■ Thinning

3

3

1
1

2

2

Figure 6.22: The force at a given pixel is the vector sum of the forces to all visible pixels.
Only boundary pixels exert a force, and only object pixels have the force computed.

The details of the growing process are relatively simple. First, a queue to
hold the points to be grown is defined. All the endpoints of the current stubs
are placed into the queue as potential starting points for the growth process.
Then points are removed from the queue one at a time and tested to see if
growth is possible; if so, it is added to the skeleton and the new skeletal point
is added to the queue if it, too, is a potential starting point.

To grow from a point P, the point must satisfy two conditions. P must have
exactly one or two 8-connected neighbors that are skeletal pixels, and if it has
two such neighbors, then these must be adjacent to each other. The preferred
direction of growth is through these neighbors towards P and beyond to the
next pixel. There will be three candidate pixels, and the one of these having the
smallest force magnitude is grown into: It is added to the skeleton and placed
on the queue for further growth steps. The growing process will stop when
the growth front hits an edge or other part of the skeleton.

At a subpixel level, the growth process first attempts to find new skeletal
pixels at double the previous resolution. Using the stub endpoints the regions
to be refined are identified, and forces are computed for each pixel at the
new resolution; the resolution doubles each time. Then the dot products are
computed as before, looking for zero crossings. When located, a zero crossing
becomes a skeletal pixel at the current resolution and also marks all containing
pixels at lower resolutions as skeletal. The refinement can be continued at

Chapter 6 ■ Thinning 233

higher resolutions until no change is seen; then the growth process continues
at the original resolution in the original way (minimal force path).

This certainly approximates the set of skeletal pixels S for a digital band.
For example, assume an infinitely long, straight band along the x axis, having
width 2w. Then the boundaries of the band are the lines y = w and y = −w.
Then the force acting on the point (x,y) would be:

F(x, y) =
∫ ∞

−∞

L1

|L1|3 dlx +
∫ ∞

−∞

L2

|L2|3 dlx (EQ 6.7)

where L1 = (x − l, y − w), L2 = (x − l, w + y), and l is the length along the
boundary. This becomes:

F(x, y) =
(

0,
4y

(w + y)(y − w)

)
(EQ 6.8)

Now, any of the dot products referred to previously can be written as:

di =
(

16y(y + dy)
(w + y)(y − w)(w + y + dy)(y + dy − w)

)
(EQ 6.9)

All that is needed is to know in what circumstances this expression is negative.
Since −w + dy < y < w − dy it is known that y − w and y + dy − w are negative
and that w + y and w + y + dy are positive, the sign of the dot product is the
sign of y(y + dy). Solving this quadratic reveals that it is negative only between
0 and −dy. Thus,

C(x, y, dx, dy) =
{

1 if − dy < y < 0
0 otherwise

(EQ 6.10)

As dy approaches 0 this becomes:

C(x, y) =
{

1 y = 0
0 otherwise

(EQ 6.11)

which means that the x axis is the skeleton, as was suspected. This demonstra-
tion holds for infinitely long straight lines in any orientation and having any
width.

The application of this method to real figures is based on three assumptions:

What is true for infinitely long lines is approximately true for shorter (and
curved) ones;

A figure can be considered to be a collection of concatenated digital band
segments.

Intersections can be represented by multiple bands, one for each crossing
line.

234 Chapter 6 ■ Thinning

From the results so far, these assumptions appear to be at least approxi-
mately true.

Further work on this idea has developed over the past decade. Most
recently, researchers have developed a high-speed algorithm for approximat-
ing the force fields and have extended the force-based thinning idea into three
dimensions [Brunner, 2008].

6.6.3 Subpixel Skeletons
The force-based thinning method has been implemented and tested on a
number of images, both artificial and scanned. The results in all cases are either
promising or excellent. The subpixel accurate skeletons provide substantially
more information about the geometry of the object. There will often be areas
in the object where the forces are not actually zero, but are small or known to
be changing. By splitting each pixel into four pixels, a more accurate force can
be calculated for each such pixel, and the region where the force is zero can be
estimated. If this fails, each subpixel can be further split into four, and so on
(Figure 6.23).

(a) (b) (c)

(d) (e) (f)

Figure 6.23: Subpixel skeletons. (a) The original image. (b) The level-1 skeleton, showing
zero crossings. (c) A subpixel section of a gap in the level-0 skeleton. (d) The level-1
skeleton. (e) Subpixel force magnitudes in a gap in the level-1 skeleton. (f) The final
skeleton with all gaps filled in.

This is expensive, since for each subpixel the visible pixels must be deter-
mined, and then the force accumulated. One way to speed this up is to compute
the forces based on the lines formed by the boundary pixel instead of using

Chapter 6 ■ Thinning 235

each boundary pixel individually. Then each line would exert a single force
on each pixel, rather than many forces. In addition, the visibility calculation
can be simplified by using a simple distance threshold. Line segments further
than d units away would not contribute a force.

Figure 6.24 shows the forces computed for a hand-printed 8, and gives the
skeleton as determined by the force-based method. For comparison purposes
the skeleton found by the Zhang-Suen algorithm is shown also.

(a)

(b)

(c)

(d)

Figure 6.24: Force-based thinning applied to a handprinted 8. (a) The forces at each
pixel, where force is proportional to the length of the line drawn from the pixels, and
direction is normal to them. (b) The original figure. (c) Thinned using Zhang-Suen. (d)
Force-based skeleton.

6.7 Source Code for Zhang-Suen/Stentiford/Holt
Combined Algorithm

/* Zhang & Suen’s thinning algorithm */

#define MAX

#include “lib.h“

#include <math.h>

#define TRUE 1

236 Chapter 6 ■ Thinning

#define FALSE 0

#define NORTH 1

#define SOUTH 3

#define REMOVE_STAIR 1

void thnz (IMAGE im);

int nays8 (IMAGE im, int r, int c);

int Connectivity (IMAGE im, int r, int c);

void Delete (IMAGE im, IMAGE tmp);

void check (int v1, int v2, int v3);

int edge (IMAGE im, int r, int c);

void stair (IMAGE im, IMAGE tmp, int dir);

int Yokoi (IMAGE im, int r, int c);

void pre_smooth (IMAGE im);

void match_du (IMAGE im, int r, int c, int k);

void aae (IMAGE image);

int snays (IMAGE im, int r, int c);

int t00, t01, t11, t01s;

void main (int argc, char *argv[])

{

IMAGE data, im;

int i, j;

if (argc < 3)

{

printf (Űsage: thnbest <input file> <output file> \n˝); exit (0);

}

data = Input_PBM (argv[1]);

if (data == NULL)

{

printf (B̋ad input file '%s’\n˝, argv[1]); exit (1);

}

/* Embed input into a slightly larger image */

im = newimage (data->info->nr+2, data ->info->nc+2);

for (i=0; i<data->info->nr; i++)

for (j=0; j<data->info->nc; j++)

if (data->data[i] [j]) im->data[i+1] [j+1] = 1;

else im->data[1+1] [j+1] = 0;

for (i=0; i<im->info->nr; i++)

{

im->data[i] [0] = 1;

im->data[i] [im->info->nc-1] = 1;

}

for (j=0; j<im->info->nc; j++)

{

im->data[0] [j] = 1;

im->data[im->info->nr-1] [j] = 1;

}

/* Pre_process */

pre_smooth (im);

aae (im);

Chapter 6 ■ Thinning 237

/* Thin */

thnz (im);

for (i=0; i<data->info->nr; i++)

for (j=0; j<data->info->nc; j++)

data->data[i] [j] = im->data[i+1] [j+1];

Output_PBM (data, argv[2]);

}

/* Zhang-Suen with Holt’s staircase removal */

void thnz (IMAGE im)

{

int i, j, k, again=1;

IMAGE tmp;

tmp = newimage (im->info->nr, im->info->nc);

/* BLACK = 1, WHITE = 0. */

for (i=0; i<im->info->nr; i++);

for (j=0; j<im->info->nc; j++)

{

if (im->data[i] [j] > 0) im->data[i] [j] = 0;

else im->data[i][j] = 1;

tmp->data[i] [j] = 0;

}

/* Mark and delete */

while (again)

{

again = 0;

/* Second sub-iteration */

for (i=1; i<im->info->nr-1; i++);

for (j=1; j<im->info->nc-1; j++)

{

if (im->data[i] [j] != 1) continue;

k = nays8(im, i, j);

if ((k >= 2 && k <= 6) && Connectivity(im, i, j) == 1)

{

if (im->data[i] [j+1] *im->data[i-1] [j]

*im->data[i] [j-1] == 0 &&

im->data[i-j][j] *im->data[i+1] [j]

*im->data[i] [j-1] == 0)

{

tmp->data[i] [j] = 1;

again = 1;

}

}

}

Delete (im, tmp);

238 Chapter 6 ■ Thinning

if (again == 0) break;

/* First sub-iteration */

for (i=1; i<im->info->nr-1; i++)

for (j=1; j<im->info->nc-1; j++)

{

if (im->data[i] [j] != 1) continue;

k = nays8(im, i, j);

if ((k >= 2 && k <= 6) && Connectivity(im, i, j)==1)

{

if (im->data[i-1] [j] *im->data[i] [j+1]

*im->data[i+1] [j]==0 &&

im->data[i] [j+1] *im->data[i+1] [j] *im->data[i] [j-1] == 0)

{

tmp->data[i] [j] = 1;

again = 1;

}

}

}

Delete (im, tmp);

}

/* Post_process */

stair (im, tmp, NORTH);

Delete (im, tmp);

stair (im, tmp, SOUTH);

Delete (im, tmp);

/* Restore levels */

for (i=1; i<im->info->nr-1; i++)

for (j=1; j<im->info->nc-1; j++)

if (im->data[i] [j] > 0) im->data[i] [j] = 0;

else im->data[i] [j] = 255;

freeimage (tmp);

}

/* Delete any pixel in IM corresponding to a 1 in TMP*/

void Delete (IMAGE im, IMAGE tmp)

{

int i, j;

/* Delete pixels that are marked */

for (i=1; i<im->info->nr-1; i++)

for (j=1; j<im->info->nc-1; j++)

if (tmp->data[i] [j])

{

im->data[i] [j] = 0;

tmp->data[i] [j] = 0;

}

Chapter 6 ■ Thinning 239

/* Number of neighboring 1 pixels*/

int nays8 (IMAGE im, int r, int c)

{

int i, j, k=0;

for (i=r-1; i<=r+1; i++)

for (j=c-1; j<=c+1; j++)

if (i !=r || c !=j)

if (im->data[i] [j] >= 1) k++;

return k;

}

/* Number of neighboring 0 pixels*/

int snays (IMAGE im, int r, int c)

{

int i, j, k=0;

for (i=r-1; i<=r+1; i++)

for (j=c-1; j<=c+1; j++)

if (i !=r || c !=j)

if (im->data[i] [j] == 0) k++;

return k;

}

/* Connectivity by counting black-white transitions on the boundary */

int Connectivity (IMAGE im, int r, int c)

{

int i, N=0;

if (im->data[r] [c+1] >= 1 && im->data[r-1] [c+1] == 0) N++;

if (im->data[r-1] [c+1] >= 1 && im->data[r-1] [c] == 0) N++;

if (im->data[r-1] [c] >= 1 && im->data[r-1] [c-1] == 0) N++;

if (im->data[r-1] [c-1] >= 1 && im->data[r] [c-1] == 0) N++;

if (im->data[r] [c-1] >= 1 && im->data[r+1] [c-1] == 0) N++;

if (im->data[r+1] [c-1] >= 1 && im->data[r+1] [c] == 0) N++;

if (im->data[r+1] [c] >= 1 && im->data[r+1] [c+1] == 0) N++;

if (im->data[r+1] [c+1] >= 1 && im->data[r] [c+1] == 0) N++;

return N;

}

/* Stentiford’s boundary smoothing method*/

void pre_smooth (IMAGE im)

{

int, i, j;

for (i=0; i<im->info->nr; i++)

for (j=0; j<im->info->nc; j++)

if (im->data[i] [j] = = 0)

if (snays (im, i, j) <= 2 && Yokoi (im, i, j)<2)

im->data[i] [j] = 2;

for (i=0; i<im->info->nr; i++)

for (j=0; j<im->info->nc; j++)

if (im->data[i] [j] = = 2) im->data[i] [j] = 1;

}

240 Chapter 6 ■ Thinning

/* Stentiford’s Acute Angle Emphasis*/

void aae (IMAGE im)

{

int i, j, again = 0, k;

again = 0;

for (k=5; k> = 1; k-=2)

{

for (i=2; i<im->info->nr-2; i++)

for (j=2; j<im->info->nc-2; j++)

if (im->data[i] [j] == 0)

match_du (im, i, j, k);

for (i = 2; i<im->info->nr-2; i++)

for (j=2; j<im->info->nc-2; j++)

if (im->data[i] [j] = = 2)

{

again = 1;

im->data[i] [j] = 1;

}

if (again = = 0) break;

}

}

/* Template matches for acute angle emphasis*/

void match_du (IMAGE im, int r, int c, int k)

{

/*D1 */

if (im->data[r-2] [c-2] == 0 && im->data[r-2] [c-1] == 0 &&

im->data[r-2] [c] == 1 && im->data[r-2] [c+1] == 0 &&

im->data[r-2] [c+2] == 0 &&

im->data[r-1] [c-2] == 0 && im->data[r-1] [c-1] == 0 &&

im->data[r-1] [c] == 1 && im->data[r-1] [c+1] == 0 &&

im->data[r-1] [c+2] == 0 &&

im->data[r] [c-2] == 0 && im->data[r] [c-1] == 0 &&

im->data[r] [c] == 0 && im->data[r] [c+1] == 0 &&

im->data[r] [c+2] == 0 &&

im->data[r+1] [c-2] == 0 && im->data[r+1] [c-1] == 0 &&

im->data[r+1] [c] == 0 && im->data[r+1] [c+1] == 0 &&

im->data[r+1] [c+2] == 0 &&

im->data[r+2] [c-1] == 0 &&

im->data[r+2][c] == 0 && im->data[r+2] [c+1] == 0)

{

im->data[r] [c] = 2;

return;

}

/* D2*/

if (k >= 2)

if (im->data[r-2] [c-2] == 0 && im->data[r-2] [c-1] == 1 &&

im->data[r-2] [c] == 1 && im->data[r-2] [c+1] == 0 &&

Chapter 6 ■ Thinning 241

im->data[r-2] [c+2] == 0 &&

im->data[r-1] [c-2] == 0 && im->data[r-1] [c-1] == 0 &&

im->data[r-1] [c] == 1 && im->data[r-1] [c+1] == 0 &&

im->data[r-1] [c+2] == 0 &&

im->data[r] [c-2] == 0 && im->data[r] [c-1] == 0 &&

im->data[r] [c] == 0 && im->data[r] [c+1] == 0 &&

im->data[r] [c+2] == 0 &&

im->data[r+1] [c-2] == 0 && im->data[r+1] [c-1] == 0

im->data[r+1] [c] == 0 && im->data[r+1] [c+1] == 0 &&

im->data[r+1] [c+2] == 0 &&

im->data[r+2] [c-1] == 0 &&

im->data[r+2] [c] == 0 && im->data[r+2] [c+1] == 0)

{

im->data[r] [c] = 2;

return;

}

/* D3 */

if (k>=3)

if (im->data[r-2] [c-2] == 0 && im->data[r-2] [c-1] == 0 &&

im->data[r-2] [c] == 1 && im->data[r-2] [c+1] == 1 &&

im->data[r-2] [c+2] == 0 &&

im->data[r-1] [c-2] == 0 && im->data[r-1] [c-1] == 0 &&

im->data[r-1] [c] == 1 && im->data[r-1] [c+1] == 0 &&

im->data[r-1] [c+2] == 0 &&

i->data[r] [c-2] == 0 && im->data[r] [c-1] == 0 &&

im->data[r] [c] == 0 && im->data[r] [c+1] == 0 &&

im->data[r] [c+2] == 0 &&

im->data[r+1] [c-2] == 0 && im->data[r+1] [c-1] == 0 &&

im->data[r+1][c] == 0 && im->data[r+1] [c+1] == 0 &&

im->data[r+1] [c+2] == 0 &&

im->data[r+2] [c-1] == 0 &&

im->data[r+2] [c] == 0 && im->data[r+2] [c+1] == 0

}

{

im->data[r] [c] = 2;

return;

}

/* D4 */

if (k>=4)

if (im->data[r-2] [c-2] == 0 && im->data[r-2] [c-1] == 1 &&

im->data[r-2] [c] == 1 && im->data[r-2] [c+1] == 0 &&

im->data[r-2] [c+2] == 0 &&

im->data[r-1] [c-2] == 0 && im->data[r-1] [c-1] == 1 &&

im->data[r-1] [c] == 1 && im->data[r-1] [c+1] == 0 &&

im->data[r-1] [c+2] == 0 &&

im->data[r] [c-2] == 0 && im->data[r] [c-1] == 0 &&

im->data[r] [c] == 0 && im->data[r] [c+1] == 0 &&

im->data[r] [c+2] == 0 &&

im->data[r+1] [c-2] == 0 && im->data[r+1] [c-1] == 0 &&

im->data[r+1] [c] == 0 && im->data[r+1] [c+1] == 0 &&

im->data[r+1] [c+2] == 0 &&

242 Chapter 6 ■ Thinning

im->data[r+2] [c-1] == 0 &&

im->data[r+2] [c] == 0 && im->data[r+2] [c+1] == 0)

{

im->data[r] [c] = 2;

return;

}

/* D5 */

if (k>=5)

if (im->data[r-2] [c-2] == 0 && im->data[r-2] [c-1] == 0 &&

im->data[r-2] [c] == 1 && im->data[r-2] [c+1] == 1 &&

im->data[r-2] [c+2] == 0 &&

im->data[r-1] [c-2] == 0 && im->data[r-1] [c-1] == 0 &&

im->data[r-1] [c] == 1 && im->data[r-1] [c+1] == 1 &&

im->data[r-1] [c+2] == 0 &&

im->data[r] [c-2] == 0 && im->data[r] [c-1] == 0 &&

im->data[r] [c] == 0 && im->data[r] [c+1] == 0 &&

im->data[r] [c+2] == 0 &&

im->data[r+1] [c-2] == 0 && im->data[r+1] [c-1] == 0 &&

im->data[r+1] [c] == 0 && im->data[r+1] [c+1] == 0 &&

im->data[r+1] [c+2] == 0 &&

im->data[r+2] [c-1] == 0 &&

im->data[r+2] [c] == 0 && im->data[r+2] [c-1] == 0)

{

im->data[r] [c] = 2;

return;

}

/* U1 */

if (im->data[r+2] [c-2] == 0 && im->data[r+2] [c-1] == 0 &&

im->data[r+2] [c] == 1 && im->data[r+2] [c+1] == 0 &&

im->data[r+2] [c+2] == 0 &&

im->data[r+1] [c-2] == 0 && im->data[r+1] [c-1] == 0 &&

im->data[r+1] [c] == 1 && im->data[r+1] [c+1] == 0 &&

im->data[r+1] [c+2] == 0 &&

im->data[r] [c-2] == 0 && im->data[r] [c-1] == 0 &&

im->data[r] [c] == 0 && im->data[r] [c+1] == 0 &&

im->data[r] [c+2] == 0 &&

im->data[r-1] [c-2] == 0 && im->data[r-1] [c-1] == 0 &&

im->data[r-1] [c] == 0 && im->data[r-1] [c+1] == 0 &&

im->data[r-1] [c+2] == 0 &&

im->data[r-1] [c-1] == 0 &&

im->data[r-1] [c] == 0 && im->data[r-1] [c+1] == 0)

{

im->data[r] [c] = 2;

return;

}

/* U2 */

if (k>=2)

if (im->data[r+2] [c-2] == 0 && im->data[r+2] [c-1] == 1 &&

Chapter 6 ■ Thinning 243

im->data[r+2] [c] == 1 && im->data[r+2] [c+1] == 0 &&

im->data[r+2] [c+2] == 0 &&

im->data[r+1] [c-2] == 0 && im->data[r+1] [c-1] == 0 &&

im->data[r+1] [c] == 1 && im->data[r+1] [c+1] == 0 &&

im->data[r+1] [c+2] == 0 &&

im->data[r] [c-2] == 0 && im->data[r] [c-1] == 0 &&

im->data[r] [c] == 0 && im->data[r] [c+1] == 0 &&

im->data[r] [c+2] == 0 &&

im->data[r-1] [c-2] == 0 && im->data[r-1] [c-1] == 0 &&

im->data[r-1] [c] == 0 && im->data[r-1] [c+1] == 0 &&

im->data[r-1] [c+2] == 0 &&

im->data[r-2] [c-1] == 0 &&

im->data[r-2] [c] == 0 && im->data[r-2] [c+1] == 0)

{

im->data[r] [c] = 2;

return;

}

/* U3 */

if (k>=3)

if (im->data[r+2] [c-2] == 0 && im->data[r+2] [c-1] == 0 &&

im->data[r+2] [c] == 1 && im->data[r+2] [c+1] == 1 &&

im->data[r+2] [c+2] == 0 &&

im->data[r+1] [c-2] == 0 && im->data[r+1] [c-1] == 0 &&

im->data[r+1] [c] == 1 && im->data[r+1] [c+1] == 0 &&

im->data[r+1] [c+2] == 0 &&

im->data[r] [c-2] == 0 && im->data[r] [c-1] == 0 &&

im->data[r] [c] == 0 && im->data[r] [c+1] == 0 &&

im->data[r] [c+2] == 0 &&

im->data[r-1] [c-2] == 0 && im->data[r-1] [c-1] == 0 &&

im->data[r-1] [c] == 0 && im->data[r-1] [c+1] == 0 &&

im->data[r-1] [c+2] == 0 &&

im->data[r-2] [c-1] == 0 &&

im->data[r-2] [c] == 0 && im->data[r-2] [c+1] == 0)

{

im->data[r] [c] = 2;

return;

}

/* U4 */

if (k>=4)

if (im->data[r+2] [c-2] == 0 && im->data[r+2] [c-1] == 1 &&

im->data[r+2] [c] == 1 && im->data[r+2] [c+1] == 0 &&

im->data[r+2] [c+2] == 0 && im->data[r+1] [c-2] == 0 &&

im->data[r+1] [c-1] == 1 &&

im->data[r+1] [c] == 1 &&

im->data[r+1] [c+1] == 0 &&

im->data[r+1] [c+2] == 0 &&

im->data[r] [c-2] == 0 && im->data[r] [c-1] == 0 &&

im->data[r] [c] == 0 && im->data[r] [c+1] == 0 &&

im->data[r] [c+2] == 0 &&

im->data[r-1] [c-2] == 0 && im->data[r-1] [c-1] == 0 &&

im->data[r-1] [c] == 0 && im->data[r-1] [c+1] == 0 &&

244 Chapter 6 ■ Thinning

im->data[r-1] [c+2] == 0 &&

im->data[r-2] [c-1] == 0 &&

im->data[r-2] [c] == 0 && im->data[r-2] [c+1] == 0

{

im->data[r] [c] = 2;

return;

}

/* U5 */

if (k>=5)

if (im->data[r+2] [c-2] == 0 && im->data[r+2] [c-1] == 0 &&

im->data[r+2] [c] == 1 && im->data[r+2] [c+1] == 1 &&

im->data[r+2] [c+2] == 0 &&

im+>data[r+1] [c-2] == 0 && im->data[r+1] [c-1] == 0 &&

im->data[r+1] [c] == 1 && im->data[r+1] [c+1] == 1 &&

im->data[r+1] [c+2] == 0 &&

im->data[r] [c-2] == 0 && im->data[r] [c-1] == 0 &&

im->data[r] [c] == 0 && im->data[r] [c+1] == 0 &&

im->data[r] [c+2] == 0 &&

im->data[r-1] [c-2] == 0 && im->data[r-1] [c-1] == 0 &&

im->data[r-1] [c] == 0 && im->data[r-1] [c+1] == 0 &&

im->data[r-1] [c+2] == 0 &&

im->data[r-2] [c-1] == 0 &&

im->data[r-2] [c] == 0 && im->data[r-2] [c+1] == 0)

}

{

im->data[r] [c] = 2;

return;

}

}

/* Yokoi’s connectivity measure*/

int Yokoi (IMAGE im, int r, int c)

{

int N[9];

int i, j, k, i1, i2;

N[0] = im->data[r] [c] != 0;

N[1] = im->data[r] [c+1] != 0;

N[2] = im->data[r-1] [c+1] != 0;

N[3] = im->data[r-1] [c] != 0;

N[4] = im->data[r-1] [c-1] != 0;

N[5] = im->data[r] [c-1] != 0;

N[6] = im->data[r+1] [c-1] != 0;

N[7] = im->data[r+1] [c] != 0;

N[8] = im->data[r+1] [c+1] != 0;

k = 0

for (i=1; i<=7; i+=2)

{

i1 = i+1; if (i1 > 8) i1 -= 8;

i2 = 1+2; if (i2 > 8) i2 -= 8;

k += (N[i] - N[i] *N[i1] *N[i2]);

}

Chapter 6 ■ Thinning 245

return k;

}

/* Holt’s staircase removal stuff*/

void check (int v1, int v2, int v3)

{

if (!v2 && (!v1 || (v3)) t00 = TRUE;

if (v2 && (v1 || v3)) t11 = TRUE;

if ((!v1 && v2) || (!v2 && v3))

{

t01s = t01;

t01 = TRUE;

}

}

int edge (IMAGE im, int r, int c)

{

if (im->data[r] [c] == 0) return 0:

t00 = t01 = t01s = t11 = FALSE;

/* CHECK (vNW, vN, vNE) */

check (im->data[r-1] [c-1], im->data[r-1] [c], im

->data[r-1] [c+1]);

/* CHECK (vNE, vE, vSE) */

check (im->data [r-1][c+1], im->data[r] [c+1],

im->data[r+1] [c+1]);

/* CHECK (vSE, vS, vSW) */

check (im->data [r+1] [c+1], im->data [r+1] [c],

im->data [r+1] [c-1]);

/* CHECK (vSW, vW, vNW) */

check (im->data [r+1] [c-1], im->data [r] [c-1],

im->data [r-1] [c-1]);

return t00 && t11 && !t01s;

}

void stair (IMAGE im, IMAGE tmp, int dir)

{

int i, j;

int N, S, E, W, NE, NW, SE, SW, C;

if (dir == NORTH)

for (i=1; i<im->info->nr-1; i++)

for (j=1; j<im->info->nc-1; j++)

{

NW = im->data[i-1] [j-1]; N = im->data[i-1] [j]; NE = im->data[i-1] [j+1];

W = im->data[i] [j-1]; c = im->data[i] [j]; E =

im->data[i] [j+1];

SW = im->data[i+1][j-1]; S = im->data[i+1] [j]; SE = im->data[i+1] [j+1];

if (dir == NORTH)

246 Chapter 6 ■ Thinning

{

if (C && ! (N &&

((E && !NE && !SW && (!W || !S)) ||

(W && !NW && !SE && (!E || !S)))))

tmp->data[i] [j] = 0;/* Survives */

.else

tmp->data[i] [j] = 1;

}else if (dir == SOUTH)

{

if (C && ! (S &&

((E && !SE && !NW && (!W || !N)) ||

(W && !SW && !NE && (!E || !N)))))

tmp->data[i] [j] = 0;/* Survives */

else

tmp->data[i] [j] = 1;

}

}

}

6.8 Website Files
medialaxis.exe Blum’s medial axis transform

stentiford.exe Stentiford’s thinning method

choi.c Choi et al. thinning

contour1.c Pavlidis contour thinning

contour2.c Pavlidis contour thinning, with pre- and post-processing

medialaxis.c Blum medial axis

stentiford.c Stentiford thinning

zhangsuen.c Basic Zhang-Suen

zhangsuenbest.c Source code, Zhang-Suen with pre- and post-processing

5.pbm Test image, digit 5

5r.pbm Test image, digit 5, level reversed from 5.pbm

B.pbm Test image, letter B

H.pbm Test image, letter H

T.pbm Test image, letter T

V.pbm Test image, letter V

X.pbm Test image, letter X

Chapter 6 ■ Thinning 247

6.9 References

Arcelli, C. ‘‘Pattern Thinning by Contour Tracing.’’ Computer Graphics and
Image Processing 17 (1981): 130–144.

Blum, H. ‘‘A Transformation for Extracting New Descriptors of Shape.’’
Symposium Models for Speech and Visual Form. Weiant Whaten-Dunn, ed.
Cambridge: MIT Press, 1967.

Bookstein, F. L. ‘‘The Line Skeleton.’’ Computer Graphics and Image Processing
11 (1979): 123–137.

Brunner, D. and G. Brunnett. ‘‘Fast Force Field Approximation and Its
Application to Skeletonization of Discrete 3D Objects.’’ G. Drettakis and
R. Scopigno, ed. EUROGRAPHICS 2008 27, no. 2 (2008).

Chen, Y. and W. Hsu. ‘‘A Modified Fast Parallel Algorithm for Thinning
Digital Patterns.’’ Pattern Recognition Letters 7 (1988): 99–106.

Chen, Y. and W. Hsu. ‘‘An Interpretive Model of Line Continuation in Human
Visual Perception.’’ Pattern Recognition 22, no. 5 (1988): 619–639.

Choi, W., Lam, K. and W. Siu. ‘‘Extraction of the Euclidean Skeleton Based on
a Connectivity Criterion.’’ Pattern Recognition 36 (2003): 721–729.

Davis, E. R. and A. P. N. Plummer. ‘‘Thinning Algorithms: A Critique and a
New Methodology.’’ Pattern Recognition 14 (1981): 53–63.

Guo, Z. and R. W. Hall. ‘‘Parallel Thinning with Two-Subiteration Algorithms.’’
Communications of the ACM 32, no. 3 (1989): 359–373.

Haralick, R. M. ‘‘Performance Characterization in Image Analysis: Thinning,
a Case in Point.’’ ICDAR 91. Paper presented at the First International
Conference on Document Analysis and Recognition, Saint-Malo, France,
September 30–October 2, 1991.

Hilditch, C. J. ‘‘Linear Skeletons from Square Cupboards.’’ Machine Intelligence
IV, B. Meltzer and D. Mitchie, ed. Edinburgh: University Press, 1969.

Holt, C. M., Stewart, A., Clint, M. and R. H. Perrott. ‘‘An Improved Parallel
Thinning Algorithm.’’ Communications of the ACM 30 (1987): 156–160.

Jang, B. K. and R. T. Chin. ‘‘Analysis of Thinning Algorithms Using Math-
ematical Morphology.’’ IEEE Transactions on Pattern Analysis and Machine
Intelligence PAMI-12 (1990): 541–551.

Kwok, P. C. K. ‘‘A Thinning Algorithm by Contour Generation.’’ Communica-
tions of the ACM 31 (1988): 1314–1324.

Latecki, L., Li, Q., Bai, X., and W. Liu. ‘‘Skeletonization Using SSM of the
Distance Transform.’’ Proceedings of the International Conference on Image
Processing, ICIP 2007, San Antonio, Texas, September 16-19, 2007.

Manocha, M. ‘‘Fast Polygon Triangulation based on Seidel’s Algorithm.’’
Graphics Gems V. A. Paeth, ed. New York: Academic Press, 1995.

Martinez-Perez, M., Javier Jiménez, J. and J. Navalon. ‘‘A Thinning Algorithm
Based on Contours.’’ Computer Vision, Graphics, and Image Processing 39
(1987): 186–201.

248 Chapter 6 ■ Thinning

Melhi, M., Ipson, S., and W. Booth. ‘‘A Novel Triangulation Procedure for
Thinning Hand-Written Text.’’ Pattern Recognition Lett. 22 (2001): 1059–1071.

Montanari, U. ‘‘A Method For Obtaining Skeletons Using a Quasi-Euclidian
Distance.’’ Journal of the ACM 15 (1968): 600–624.

Montanari, U. ‘‘Continuous Skeletons from Digitized Images.’’ Journal of the
ACM 16. (1969): 534–549.

Morrison, P. and J. Zou. ‘‘Skeletonization Based on Error Reduction.’’ Pattern
Recognition 39 (2006): 1099–1109.

Ogniewicz, R., and O. Kubler. ‘‘Hierarchic Voronoi Skeletons.’’ Pattern Recog-
nition 28 (1995): 343–359.

Pal, S. K. ‘‘Fuzzy Skeletonization of an Image.’’ Pattern Recognition Letters 10
(1989): 17–23.

Parker, J. R. and C. Jennings. ‘‘Defining the Digital Skeleton.’’ Paper presented
at SPIE Conference on Vision Geometry, Boston, MA, 1992.

Pavlidis, T. Algorithms for Graphics and Image Processing. Rockville, Maryland:
Computer Science Press, 1982: p. 416.

Piper, J. ‘‘Efficient Implementation of Skeletonization Using Interval Coding.’’
Pattern Recognition Letters 3 (1985): 389–397.

Sinha, R. M. K. ‘‘A Width-Independent Algorithm for Character Skeleton Esti-
mation.’’ Computer Vision, Graphics, and Image Processing 40 (1987): 388–397.

Sossa, J. H. ‘‘An Improved Parallel Algorithm for Thinning Digital Patterns.’’
Pattern Recognition Letters (1989): 77–80.

Stefanelli, R. ‘‘A Comment on an Investigation into the Skeletonization
Approach of Hilditch.’’ Pattern Recognition 19 (1986): 13–14.

Stentiford, F. W. M. and R. G. Mortimer. ‘‘Some New Heuristics for Thinning
Binary Handprinted Characters for OCR.’’ IEEE Transactions on Systems,
Man, and Cybernetics SMC-13, no. 1 (January/February 1983): 81–84.

Suzuki, S. and K. Abe. ‘‘Sequential Thinning of Binary Pictures Using Distance
Transformation.’’ Paper presented at Eighth International Conference on
Pattern Recognition, Paris, 1986.

Suzuki, S. ‘‘Binary Picture Thinning by an Iterative Parallel Two-Subcycle
Operation.’’ Pattern Recognition 20 (1987): 297–307.

Xia, Y. ‘‘Skeletonization VIA the Realization of the Fire Front’s Propagation and
Extinction in Digital Binary Shapes.’’ IEEE Transactions on Pattern Analysis
and Machine Intelligence PAMI-11 (1989): 1076–1086.

Ye, Q.Z. ‘‘The Signed Euclidean Distance Transform and Its Applications.’’
Paper presented at proceedings of the Ninth International Conference on
Pattern Recognition, Rome, 1988, 495–499.

Yokoi, S., Toriwaki, J. and T. Fukumura. ‘‘Topological Properties in Digitized
Binary Pictures.’’ Systems Computer Controls 4 (1973): 32–39.

Chapter 6 ■ Thinning 249

Zhang, S. and K. S. Fu. ‘‘A Thinning Algorithm for Discrete Binary Images.’’
Paper presented at proceedings of the International Conference on Comput-
ers and Applications, Beijing, China, 1984, 879–886.

Zou, J., Chang, H., and H. Yan. ‘‘Shape Skeletonization by Identifying Discrete
Local Symmetries.’’ Pattern Recognition 34 (2001): 1895–1905.

C H A P T E R

7

Image Restoration

7.1 Image Degradations—The Real World

Anyone who has ever taken a photograph will understand that capturing an
image exactly as it appears in the real world is very difficult, if not impossible.
There is noise to contend with, which in the case of photography is caused by
the graininess of the emulsion, or the resolution and quantization of the image
sensor motion blur, focus problems, depth-of-field issues, and the imperfect
nature of even the best lens system. The result of all these degradations is that
the image (photograph) is an approximation of the scene.

Often the image is good enough for the purpose for which it was produced.
On the other hand, there are some instances where the correction of an image
by computer is the only way to obtain a usable picture. The original problems
with the Hubble Space Telescope are a case in point; the optics produced
images that did not approach the potential of the telescope, and a repair
mission was not immediately possible. Computers were used to repair some
of the distortion caused by the optics and give images that were of high quality.

Image restoration is the art and science of improving the quality of an image
based on some absolute measure. It usually involves some means of undoing
a distortion that has been introduced, such as motion blur or film graininess.
This can’t be done in any perfect way, but vast improvements are possible in
some circumstances.

The techniques of image restoration are very mathematical in nature, and
this may distress some people who are interested in the subject. The purpose
of this section is to provide insight, and so a very practical approach is taken.

251

252 Chapter 7 ■ Image Restoration

The mathematics will be skimmed over, and readers interested in the details
will find references at the end of this chapter to explore further. However, not
all the math can be eliminated.

The example of the Hubble Space Telescope is very relevant, since it is an
ideal way to introduce a technique for characterizing the distortion inherent in
an image. A star, when viewed through a telescope, should be seen as a perfect
point of light. Ideally, all the light energy of the star would be focused on a
single pixel. In practice this is not so, because the distortions of the atmosphere
and the telescope optics will yield a slightly blurred image in which the central
pixel is brightest, and a small region around it is less bright, but brighter than
the background. The distortions that have been inflicted on the point image
of the star are reflected in the shape and intensity distribution of the star’s
image. All stars (for a reasonable optical system) will have the same distortions
imposed upon them; indeed, all points on the image have been replaced by
these small blobs, and the sum of all the blobs is the sampled image.

The effect that an image acquisition system has on a perfect point source
is called the point spread function (PSF). The sample image has been produced
by convolving the PSF with the perfect image, so that the same blur exists at
all points. Figure 7.1 shows a diagrammatic view of how distortion and noise
have been applied to the original image to give the sampled, observed image.
To obtain the perfect image given the sampled one is the goal of restoration,
and it is not generally possible. We therefore wish to improve the image as
much as possible, and the PSF tells us what has been done to the image. The
ideal solution is to deconvolve the image and the PSF, but this can only be done
approximately and at some significant expense.

∗ +

Original scene

Perfect 2-D
Image

Convolve with
point spread function

Add noiseh

Resulting image
f(i,j)

Figure 7.1: One model of how a perfect image becomes distorted by imperfect (real)
acquisition systems.

This discussion assumes that the PSF is the same at all points of the image,
in which case the system is said to be spatially invariant. This is the situation
generally assumed in the literature, but the Space Telescope was not spatially
invariant. In cases like this the solution is to assume that the PSF is almost

Chapter 7 ■ Image Restoration 253

constant over a small region of the image, and to restore the image in pieces
using very similar techniques to those that will be discussed.

The first thing to do is to see if a blurred image can be created artificially,
by convolving a known PSF with a created image. Then methods of reducing
the blur can be applied to these known images, and the results can be assessed
objectively. Since it is important to know the PSF, methods of estimating it from
a distorted image must also be discussed, as will certain special cases (such as
motion blur) for which specific restoration schemes have been devised.

A key tool in the analysis and restoration of images is the Fourier transform.
This is a mathematical tool devised in the mid-twentieth century and based
on the Fourier series, which was itself devised more than 200 years ago. Its
goal is to determine how much of each possible frequency occurs in a specific
signal. It was first used to analyze sound waves and like signals that were
specifically composed of the sum of many sine wave-like signals, but the
use has been expanded to include other kinds of signals and other kinds of
frequencies. Because the Fourier transform is so crucial to further work on
image restoration, it needs to be examined in more detail.

7.2 The Frequency Domain

A convolution can be carried out directly on an image by moving the convolu-
tion matrix (image) so that it is centered on each pixel of the image in turn, then
multiplying the corresponding elements and summing the products. This was
described in Equation 2.13, for example. This is a time-consuming process for
large images, and one that can be speeded up by using the Fourier transform.

A transform is simply a mapping from one set of coordinates to another. For
example, a rotation is a transform; the rotated coordinate system is different
from the original, but each coordinate in the original image has a corresponding
coordinate in the rotated image. The Hough transform is another example, in
which pixel coordinates (i,j) are converted into coordinates (m,b) representing
the slope and intercept of the straight lines that pass through the pixel.

The Fourier transform converts spatial coordinates into frequencies. Any
curve or surface can be expressed as the sum of some number (perhaps
infinitely many) of sine and cosine curves. In the Fourier domain (called
the frequency domain as well) the image is represented as the parameters of
these sine and cosine functions. The Fourier transform is the mathematical
mechanism for moving into and out of the frequency domain.

The frequency domain is so named because the two parameters of a sine
curve are the amplitude and the frequency. The fact that an image can be
converted into a frequency domain representation implies that the image can
contain high-frequency or low-frequency information; this is true. If the grey
level of some portion of the image changes slowly across the columns, then

254 Chapter 7 ■ Image Restoration

it would be represented in the frequency domain as a sine or cosine function
having a low frequency. Something that changes quickly, such as an edge, will
have high-frequency components.

It is therefore possible to build filters that will remove or enhance certain
frequencies in the image, and this will sometimes have a restorative effect.
Indeed, noise consists of mainly high-frequency information, and so filtering
out of the very high frequencies should have a noise reduction effect. It
unfortunately also has an edge-reduction effect.

There are many other reasons to use a Fourier transform. A convolution can
be carried out directly on an image by moving the convolution matrix (image)
so that it is centered on each pixel of the image in turn, and then multiplying
the corresponding elements and summing the products. This was described
in Equation 2.13, for example. It is a time-consuming process for large images,
and one that can be speeded up greatly by using the Fourier transform.

7.2.1 The Fourier Transform
The Fourier transform breaks up an image (or, in one dimension, a signal) into
a set of sine and cosine components. It is important to keep these components
separate, and so a vector of the form (cosine, sine) is used at each point in the
frequency domain image; that is, the values of the pixels in the frequency
domain image are two component vectors. A convenient way to represent
these is as complex numbers.

Each complex number consists of a real part and an imaginary part, which
can be thought of as a vector. A typical complex number could be written as:

z = (x, jy) = x + jy (EQ 7.1)

where j is the imaginary number
√

−1. The exponential of an imaginary number
can be shown to be the sum of a sine and cosine, which is exactly what we want:

ejθ = cos θ + jsin θ (EQ 7.2)

This polar form is what will be used from here on, but it is important to
remember that it is really a shorthand for the sum of the sine and cosine parts.
In one dimension, the Fourier transform of a continuous function f (x) is:

F(w) =
∞∫

t = 0

f (t) e−jwtdt (EQ 7.3)

If the function has been sampled so that it is now discrete, the integral
becomes a sum over all the sampled points:

F(w) =
N − 1∑
k = 0

f (k) e
2π jwk

N (EQ 7.4)

Chapter 7 ■ Image Restoration 255

This will be called the discrete Fourier transform (DFT), and is what is really
calculated for sampled data like images when a Fourier transform is computed.
If the function f (k) is a sample sine curve, then the Fourier transform F(w)
should yield a single point showing the parameters of the curve. Figure 7.2a
shows just such a sampled sine curve, which has the form

f (k) = 2 Sin
(

2πk
128

)
(EQ 7.5)

Figure 7.2b shows the Fourier transform of the curve. Note that it has a
single peak at the point w = 8, which happens to correspond to the frequency
of the original sine curve: eight cycles per 1024 pixels, or one cycle in 128 pixels.
Figure 7.2c and d show a pair of sine curves and their Fourier transform, which
has two peaks (one per sine curve).

(a) (b)

(c) (d)

Figure 7.2: Simple one-dimensional signals and their Fourier transforms. (a) Sine function
with a period of 128 pixels. (b) Fourier transform, showing a peak at 8 for a signal of
duration 1024, giving eight periods/duration. (c) Sum of two sine curves: period = 128 +
period = 300. (d) Fourier transform, showing two peaks, one per sine function.

The Fourier transforms shown in Figure 7.2 were computed by the C
procedure slow.c, which uses Equation 7.4 to do the calculation. This does

256 Chapter 7 ■ Image Restoration

work fine, but is very slow, and it would not likely be used in any real system.
Because of the very useful nature of the Fourier transform, an enormous
effort has been extended to make it computationally fast. The essential C code
from slow.c is shown in Figure 7.3, this can be compared with the code for
the fast Fourier transform (FFT), which will be discussed in the next section.
The complex numbers are implemented as structures, each having a real and
imaginary component.

void slowft (float *x, complex *y,

int n)

{

 COMPLEX tmp, z1, z2, z3, z4;

 int m, k;

 cmplx(0.0,atan(1.0)/n* -8.0,&tmp);

 for (m = 0; m<=n/2; m++)

 {

 y[m].real=x[0]; y[m].imag=0.0;

 for (k=1; k<=n-1; k++)

 {

/* Exp (tmp*k*m) */

 cmplx ((float)k, 0.0, &z2);

 cmult (tmp, z2, &z3);

 cmplx ((float)m, 0.0, &z2);

 cmult (z2, z3, &z4);

 cexp (z4, &z2);

/* *x[k] */

 cmplx (x[k], 0.0, &z3);

 cmult (z2, z3, &z4);

/* + y[m] */

 csum (y[m], z4, &z2);

 y[m].real = z2.real;

 y[m].imag = z2.imag;

 }

 }

}

viod cmplx(float rp, float ip, COMPLEX

*z)

{

 z->real = rp;

 z->imag = ip;

}

{

 COMPLEX x, y;

 x.real = exp((double)zl.real);

 x.imag = 0.0;

 y.real=(float)cos((double)zl.imag);

 y.imag=(float)sin((double)zl.imag);

 cmult (x, y, res);

}

void cmult (COMPLEX zl, COMPLEX z2,

 COMPLEX *res)

{

 res->real = z1.real*z2.real-

 z1.imag*z2.imag;

 res->imag=z1.real*z2.imag +

 z1.imag*z2.real;

}

void csum (COMPLEX z1, COMPLEX z2,

COMPLEX *res)

{

 res->real = z1.real + z2.real;

 res->imag = z1.imag + z2.imag;

}

float cnorm (COMPLEX z)

{

 return z.real*z.real +z.imag*z.imag;

}

void cexp (COMPLEX zl, complex *res)

Figure 7.3: Source code for the obvious implementation of the Fourier transform.

7.2.2 The Fast Fourier Transform
Make no mistake, the FFT is simply a faster way to compute the Fourier
transform, and is not a new or different transform in its own right [Cooley,
1965]. The optimizations needed to speed up the calculation are partly standard
programming tricks (such as computing some of the values in advance outside

Chapter 7 ■ Image Restoration 257

of the loop) and partly mathematical techniques. There are a number of
very good references on the FFT [Bracewell, 1965; Brigham, 1974], but these
deal rather rigorously with the subject. Here, the code in Figure 7.3 will be
successively improved until it implements the basic FFT method.

The first optimization involves moving the exponential calculation (cexp) to
a position outside of the inner loop. This is done by precomputing all the N
possible products:

F(w) =
n − 1∑
k = 0

f (k) e(−2π j/n)(wk)f (k) =
n − 1∑
k = 0

pre[wk mod n] f (k) (EQ 7.6)

This reduces the strength of the operation within the loop from a com-
plex exponentiation to a complex product. For the transform computed in
Figure 7.2a–b, for example, the program (Figure 7.3) requires about 5 times the
CPU time as does the program slow2.c (Figure 7.4), which uses precomputed
exponentials.

void slowft(float *x, COMPLEX *y, int n)

{

 COMPLEX tmp,z1, z2, z3, z4, pre[1024];

 int m, k, i, p;

/* Constant factor -2 pi */

 cmplx (0.0, atan(1.0)/n * -8.0, &z1);

 cexp (z1, &tmp);

/* Precompute most of the exponential */

 cmplx (1.0, 0.0, &z1);/*z1=1.0; */

 for (i=0; i<n; i++)

 {

 cmplx(z1.real, z1.imag, &(pre[i]));

 cmult (z1, tmp, &z3);

 cmplx (z3.real, z3.imag, &z1);

 }

/* Compute all Y values */

 for (m = 0; m<=n; m++)

 {

 cmplx (x[0], 0.0, &(y[m]));

 for (k=1; k<=n-1; k++)

 {

 p = (k*m % n);

 cmplx (x[k], 0.0, &z3);

 cmult (z3, pre[p], &z4);

 csum (y[m], z4 &z2);

 y[m].real = z2.real;

 y[m].imag = z2.imag;

 }

 }

}

Figure 7.4: The program slow2, obtained from slow by precomputing the complex
exponential entries.

The next step involves the mathematical observation that the even-numbered
elements can be computed separately from the odd ones. In cases where n
is even, this will reduce the number of multiplications by half. The even
coefficients are found using:

F(2a) =
n/2 − 1∑

k = 0
e(−2π j/n)(ak) Sum [k]

Sum[k] = (f (k) + f (k + m))
2

(EQ 7.7)

258 Chapter 7 ■ Image Restoration

where a runs from 0 to n/2 − 1. Similarly, the odd elements are found by:

F(2a + 1) =
n/2 − 1∑

k = 0
e(−2π j/n)(ak) Diff [k]

Diff [k] = (f (k) − f (k + m))e(−2π j/n)k

2

(EQ 7.8)

The Sum and Diff arrays can be calculated in advance. The odd and even
parts of the Fourier transform are computed separately, and then merged into
a common matrix F. The Fourier transform of Figure 7.2 requires 0.81 seconds
using this enhancement (program slow3.c, Figure 7.5). In the code shown in
the figure, the function evenoddfinds the Sum and Diff arrays, and the previous
version of the FTT (slow2.c) is called to compute the actual transform.

void evenodd (float *x, COMPLEX *y, int n)

{

 int m, i;

 COMPLEX Sum[1024],Diff[1024], z1, z2;

 COMPLEX Even[512], Odd[512], tmp;

 float xs, ys;

 m = n/2;

 cmplx (0.0, atan (1.0)/n * -8.0, &z1);

 cexp (z1, &tmp);

 cmplx (1.0, 0.0, &z1);

 for (i=0; i<m; i++)

 {

 xs = (x[i] + x[i+m])/2.0;

 ys = (x[i] - x[i+m])/2.0;

 cmplx (xs, 0.0, &(Sum[i]));

 cmplx (ys, 0.0, &z2);

 cmult (z1, z2, &(Diff[i]));

 cmult (z1, tmp, &z2);

 cmplx(z2.real,z2.imag, &z1);

 }

 slowft (x, Even, m);

 slowft (x, Odd, m);

 for (i=0; i=<m; i++)

 {

 y[i<<1] = Even[i];

 y[i<<1 + 1] = Odd[i];

 }

}

Figure 7.5: The program slow3, in which the odd and even transform elements are
computed separately.

Now comes an obvious step, but one that restricts the input data set even
further. It seems obvious that if the number of elements is a power of two rather
than simply being even, then the number of even elements is still even and can
profit from a repeated application of Equation 7.7. Ditto, of course, for the odd
elements, down to the point where there is only one element, which is a very
simple case. This means that the calculation now reduces to the calculations
of Equations. 7.7 and 7.8, followed by a recursive transform calculation of the
odd and even halves, and then the merging of the two halves.

With this step, the basic FFT algorithm is in place. There are more optimiza-
tions that are often associated with a good FFT procedure, but the essentials are
present in the program slow4.c (Figure 7.6); this program requires only 0.07
seconds to complete the Fourier transform we have been using as an example.

Chapter 7 ■ Image Restoration 259

void slowft(float *x,COMPLEX *y, int n)

{

 COMPLEX xx[1024];

 int i;

 for (i=0; i<n; i++)

 cmplx (x[i], 0.0, &(xx[i]));

 evenodd (xx, y, n);

}

void evenodd(COMPLEX *x,

 COMPLEX *Y,int n)

{

 int m, i;

 COMPLEX *Sum, *Diff;

 COMPLEX *Even, *Odd;

 COMPLEX z1, z2, z3, z4, tmp, two;

 float xs, ys;

 if (n<1 printf ("what???? \n");

/* The simple case, where N=1 */

 cmplx (2.0, 0.0, &two);

 if (n == 1)

 {

 cmplx(x[0].real,x[0].imag,&(y[0]));

 return;

 }

/* Otherwise, N is even */

 m = n/2;

 cmplx (0.0,atan (1.0)/n* -8.0, &z1);

 cexp (z1, &temp);

 cmplx (1.0, 0.0, &z1);

/* Allocate temporary space */

 Sum = (COMPLEX *)

 malloc(sizeof (struct cpx)*m);

 Diff = (COMPLEX *)

 malloc (sizeof (struct cpx) *m);

Even = (COMPLEX *)

 malloc (sizeof (struct cpx) * m);

Odd = (COMPLEX *)

 malloc (sizeof (struct cpx) *m);

if (Sum==0 || Diff==0 ||

 Even==0 || Odd==0)

{

 printf ("Panic-memory.\n");

 exit(1);

}

for (i=0; i<m; i++)

{

 csum (x[i], x[i+m], &z3);

 cdiv (z3, two, &(Sum[i]));

 cdif (x[i], x[i+m], &z3);

 cmult (z3, z1, &z4);

 cdiv (z4, two, &(Diff[i]));

 cmult (z1, tmp, &z2);

 cmplx (z2.real, z2.imag, &z1);

}

evenodd (Sum, Even, m);

Evenodd (Diff, Odd, m);

for (i=0; i<m; i++)

{

 y[i*2].real = Even[i].real;

 y[i*2].imag = Even[i].imag;

 y[i*2 + 1].real = Odd[i].real;

 y[i*2 + 1].imag = Odd[i].imag;

}

free(Sum); free(Diff);

free(Even); free(Odd);

}

Figure 7.6: The program slow4, which is the essential code for the FFT.

OpenCV offers a convenient set of functions for computing the Fourier
transform of images and signals. The accompanying website contains a Fourier
transform library named fftlib.c that can be used in the remainder of this
chapter instead of the OpenCV functions, and for which the source code is
available. The basic FFT procedure in this library is called, simply, fft. The
initialization procedure fftinit must be called first, passing the size of the
data array to be transformed. There are many useful functions in this library,
which will be described as the need arises.

260 Chapter 7 ■ Image Restoration

7.2.3 The Inverse Fourier Transform
The inverse Fourier transform will undo the transformation; when given the
Fourier transform of a set of data, the inverse transform will reconstruct the
original data. The log function and the exp function have a similar relationship,
where one undoes the other.

The formula for the discrete inverse Fourier transform is:

f (k) = 1
N

N − 1∑
w = 0

F(w)e2π jwk/N (EQ 7.9)

which differs from the forward transform in the sign of the exponent. Now
might be the time to point out that the constant factor 1/n is somewhat flexi-
ble. Some people apply it to the forward transform, some split it between the
forward and inverse transforms, and some apply it only to the inverse trans-
form. In fact, the programs slow1.c – slow4.c produce somewhat different
numerical results because the multiplicative constant was ignored utterly.

Of course, the fast algorithm can be applied to the inverse transform, so
that a set of data can be transformed just as easily in either direction. In the
fftlib.c routines, the inverse one-dimensional FFT function is the same as the
forward FFT function; there is a parameter that specifies a forward or inverse
direction.

7.2.4 Two-Dimensional Fourier Transforms
So far, the application of the Fourier transform to images has been vague, since
the transforms seen so far apply to one-dimensional data only. The extension
to two dimensions is simple; mathematically, we have:

F(u, v) = 1√
nm

n − 1∑
i = 0

m − 1∑
k = 0

e−2π j(ui + vk)/nmf (i, k) (EQ 7.10)

The inverse transform is the same, but with the sign in the exponent
reversed. Note that the constant multiplier is split between the forward and
inverse transforms, which is not always done.

The Fourier transform of an image f is calculated by first computing the
Fourier transform of each row, giving an image f ’. Then the Fourier transform
of each column of f ’ is computed, giving F, the transform of the image.
This allows us to use the one-dimensional FFT methods already discussed to
compute the two-dimensional transform. Figure 7.7 gives a sample 2D FFT
routine based on this, which was in fact taken from fftlib.c.

Chapter 7 ■ Image Restoration 261

void fft2d (COMPLEX_IMAGE image,

 float direction)

{

 float temp[1024]; /* For columns */

 int i, j; /* Iteration counters */

 int d, nu;

 nu = vlog2(FFTN);

 if (direction == FORWARD)

 d = 0;

 else d = 1;

/* Transform Rows */

 for(i = 0; i < FFTN; i++)

 fft (image[i], direction);

/* Transform Columns */

 for(i = 0; i < FFTN; i++)

 {

 for(j = 0; j < FFTN; j++)

 {

 temp[j] = image[j][i];

 temp[j+FFTN] =image[j][i+FFTN];

 }

 fft (temp, direction);

 for(j = 0; j < FFTN; j++)

 {

 image[j][i] = temp[j];

 image[j][i+FFTN] = temp[j+FFTN];

 }

 }

}

Figure 7.7: The basic two-dimensional FFT. The row transformation is performed in place
but the columns must be copied into consecutive locations in a temporary array. The
direction parameter controls whether a forward or inverse transform is done.

Equation 7.10 describes the general case. For the purposes of image restora-
tion, it will be assumed that the images are square N×N arrays, where N is a
power of two. If this is not initially true, then the images can be enlarged by
adding rows and columns containing all zero pixels until it is true.

In addition to the use of the Fourier transform to allow the filtering of certain
frequencies, there are other useful properties that become quite important
when discussing two-dimensional data. Most important from the point of
view of image processing is that a convolution is much easier to do in the
frequency domain than in the spatial domain. In fact, a convolution is simply
an element-by-element product of the Fourier transforms of the two images

262 Chapter 7 ■ Image Restoration

being convolved. Specifically, the frequency domain convolution of image a
with image b is performed as follows:

1. Check the image sizes to ensure that they are the same. If not, add zeros
to the smaller image until it is the same size as the larger one.

2. Compute A, the Fourier transform of the image a; also compute B, the
Fourier transform of the image b.

3. Compute the new image C as the product of the corresponding pixels in
A and B; that is, C(i, j) = A(i, j) × B(i, j).

4. Compute the image c, the inverse Fourier transform of C. This is the
result of the convolution.

In spite of the complexity of the Fourier transform computation, this process
is actually faster than the straightforward method of Equation 2.13 when the
smaller of the two images is larger than about 16×16 pixels.

7.2.5 Fourier Transforms in OpenCV
The Fourier transform function in OpenCV is quite flexible, allowing single or
multiple dimension transforms to be computed by the same routine. The basic
call is:

cvDFT(a, b, flag, height);

where a is the input data; b is the output Fourier transform; flag is an integer
whose value indicates a set of possible requests; and height is the number
of data rows to be processed. If a and b point to the same data array, the
calculation is done in place, and the input data is overwritten by the resulting
transform.

The flag parameter has a few commonly used values:

CV_DXT_FORWARD— Do a forward transform

CV_DXT_INVERSE— Do an inverse transform

CV_DXT_SCALE— Scale the result (divide by the number of elements)

CV_DXT_ROWS— Treat the rows as distinct data vectors and calculate the
transform of all of them (as opposed to computing a two-dimensional
transform)

These can be combined using an OR operator. A commonly used example
would be

(CV_DXT_INVERSE | CV_DXT_SCALE)

which would result in a scaled inverse transform.

Chapter 7 ■ Image Restoration 263

The type of the data arrays merits some discussion. The cvDFT function
accepts neither an image as a parameter nor a floating-point array. The input
and output parameters are of type CvMat *, which are pointers to OpenCV
matrix objects, or vectors in the one-dimensional case. This is an odd type,
designed to implement a matrix of arbitrary nature. The type of the components
and the matrix dimensions and size are fixed when created, but can be float
or integer, complex, or double. Accessing the components is not as simple as
for an array type, but can be in the same manner as are pixels in an IplImage

type, by using an access function such as cvSet1D or cvSet2D.
As a simple example, here is an annotated program that calculates a

one-dimensional Fourier transform of the sine wave of Equation 7.5. It prints
the values of the transform, and then calculates the reverse transform and
prints the difference between the original data values and the result of the
forward and inverse transformation. In most cases, this difference is zero to
six digits. This example shows how to use a CvMat data object and how to find
the Fourier transform of a one-dimensional data set.

1. Declare the needed variables:

int i,j;

CvScalar s, s1;

double p;

CvMat* a;

2. Create a matrix 1024 elements in size. The constant CV_32FC2 passed
to cvCreateMat means a 32-bit floating-point complex data type for
components:

a = cvCreateMat(1024, 1, CV_32FC2);

3. Initialize the array to the sine function ak = 2 sin (2 ∗ π ∗ k/128), with the
imaginary part 0. The function cvSet1D is used to set each value, just as
cvSet2D is used in the case of setting an image pixel:

for (i=0; i<1024; i++)

{

s.val[0] = 2.0 * sin (2.0*PI*i/128);

s.val[1] = 0.0;

cvSet1D(a, i, s);

}

4. Do the Fourier transform:

cvDFT(a,a,CV_DXT_FORWARD,0);

264 Chapter 7 ■ Image Restoration

5. Print it, and note the max value at i=8:

for (i=0; i<256; i++)

{

s = cvGet1D (a, i); s1 = cvGet1D (a, i+256);

printf (“%d %f %d %f “, i,s.val[0], i*2,s1.val[0]);

s = cvGet1D (a, i+512); s1 = cvGet1D (a, i+768);

printf (“%d %f %d %f\n“, i, s.val[0], i*2, s1.val[0]);

}

scanf (“%d“, &j);

6. Now back transform, with scaling:

cvDFT(a,a,CV_DXT_INVERSE_SCALE,0);

7. Finally, examine each element of the inverse transform and find the
difference between it and the original data:

for (i=0; i<1024; i++)

{

s = cvGet1D(a, i);

p = 2.0 * sin (2.0*PI*i/128);

printf (“%d %lf %lf %lf\n“, i,p,s.val[0],p-s.val[0]);

}

The result of the forward transform followed by an inverse transform
should be the original data, so the differences should be near 0. This
program can be found on the website as fft1d.c.

7.2.6 Creating Artificial Blur
Image blur is accomplished by convolving an image with a PSF that represents
the precise nature of the blur. A convolution can be performed in the frequency
domain by computing the Fourier transform of the two images concerned,
multiplying those transforms together pixel by pixel, and computing the
inverse transform of the result. Thus, it should be a simple matter to introduce
blur into some perfect images to obtain blurred versions that can be used for
experimentation. Restoration methods can be tested on these known images,
and the quality of the result can be determined by simply comparing the
original against the restored image.

void fft2d (COMPLEX_IMAGE image, float direction)

{

float temp[1024]; /* For coloumns */

int i, j; /* Iteration counters */

int d, nu;

nu = vlog2(FFTN);

Chapter 7 ■ Image Restoration 265

if (direction == FORWARD)

d = 0;

else d = 1;

/* Transform Rows */

for(i = 0; i < FFTN; i++)

fft (image[i], direction);

/* Transform Columns */

for(i = 0; i < FFTN; i++)

{

for(j = 0; j < FFTN; j++)

{

temp[j] = image[j][i];

temp[j+FFTN] =image[j][i+FFTN];

}

fft (temp, direction);

for(j = 0; j < FFTN; j++)

{

image[j][i] = temp[j];

image[j][i+FFTN] = temp[j+FFTN];

}

}

}

Figure 7.8 shows a simple image that can be used for experimentation: It is a
128×128 image that simply contains the words The Fourier Transform. The PSF
to be used is also shown. This particular PSF should blur the image equally in
all directions, and is circular with a diameter of five pixels. The blurred version
of the image (Figure 7.8c) is unreadable.

0.01 0.01 0.25 0.1 0.01

0.1 0.35 0.5 0.35 0.1

0.25 0.5 1.0 0.5 0.25

0.1 0.35 0.5

(a) (b) (c)

0.35 0.1

0.01 0.1 0.25 0.1 0.01

Figure 7.8: Blurring an image using a frequency domain convolution. (a) The original
image. It was obtained using a screen capture, and is without noise. (b) The PSF used to
generate the blur. (c) The result of convolving the image with the PSF.

266 Chapter 7 ■ Image Restoration

It is important to note that the pixel values in the PSF image are all less than
or equal to 1.0, since a PSF should not add energy (light, pixel levels) to the
image; a PSF only spreads out the existing energy. If the pixel values in the
PSF image were in the usual range of 0–255, the distortions introduced may
be beyond the scope of image restoration to fix.

The blurred image was created using the blur.c program that is provided
on the website. While discussing the various aspects of image restoration,
we will be building a collection of software that actually performs the oper-
ations described. Each program will perform a specific task related to image
restoration, and will illustrate a few of the basic functions needed. While each
program is a stand-alone routine that accomplishes a specific task, the idea
is to provide a collection of basic procedures that can be mixed and matched
according to the specific needs of a task.

As the first program in the collection, blur.c introduces the largest number
of new modules. All it really does is read in two image files, a source image and
a PSF image, and convolve them as described previously. The main program
describes this process in detail.

First, we have the basic declarations and include files:

#include <cv.h>

#include <highgui.h>

#include <stdlib.h>

int main(int argc, char** argv)

{

IplImage* img = NULL;

IplImage *psf, *psfa;

IplImage *grayImg, *z, *zz;

int i,j;

CvScalar s, s1;

double p, q;

Now the input image is read in. Change the path name to that of any file to
be processed (or ask for a file name from input):

img=cvLoadImage(h̋:\\aipcv\\ch6\\face.pgm˝, CV_LOAD_IMAGE_UNCHANGED);

if (img == 0)

{

printf (I̋nput file not open.\n˝);

return 0;

}

The Fourier transform can be calculated only for a grey-level image, so the
input might need to be converted from color to grey:

grayImg=cvCreateImage(cvSize(img->width,img->height),img->depth, 1);

grayImg->origin = img->origin;

if (img->nChannels > 1)

cvCvtColor(img, grayImg, CV_BGR2GRAY);

Chapter 7 ■ Image Restoration 267

else

grayImg = img;

Now compute the two-dimensional Fourier transform of the grey image. There
is no OpenCV function to do exactly this, so one has to be built. fftImage
computes the Fourier transform of the image provided and returns a pointer
to an image representing it. This image will contain pixels that are complex
numbers, and so has two floating-point channels.

z = fftImage (grayImg);

The frequency domain image can be displayed, although it is not necessary.
Because a Fourier transform image has complex pixels and a huge range of
levels, a special display routine has been provided: displayFDimage.

displayFDimage (z, T̋ransform˝);

Now read the PSF image:

psf = cvLoadImage(h̋:\\aipcv\\ch6\\psf1.pgm˝, CV_LOAD_IMAGE_UNCHANGED);

To compute a convolution between the PSF and the input image, the two
must be the same size. The align function copies the PSF image, centered, into
an image of zero-valued complex pixels that has the specified size — in most
cases, the size of the image to be convolved with.

psfa = align (psf, img->height, img->width);

Now transform and display the PSF:

zz = fftImage (psfa);

displayFDimage (zz, F̋FT of PSF˝);

Now the convolution is computed in the frequency domain. Extract the
corresponding complex valued pixels (that is, pixels having the same i,j
coordinates) from the two images and multiply them together. Multiplying
two complex numbers is the same as multiplying two binomials.

for (i=0; i<z->height; i++)

{

for (j=0; j<z->width; j++)

{

s = cvGet2D (z, i, j);

s1 = cvGet2D (zz, i, j);

p = s.val[0]*s1.val[0] - s.val[1]*s1.val[1];

q = s.val[0]*s1.val[1] + s.val[1]*s1.val[0];

s.val[0] = p; s.val[1] = q;

cvSet2D (z, i, j, s);

}

}

268 Chapter 7 ■ Image Restoration

The image z is now the Fourier transform of the blurred image, or the
convolution of the two images we started with. Compute the inverse transform
of this image using fftImageInv, and then display the result.

zz = fftImageInv (z);

displayFDimage (zz, R̋esult˝);

return 0;

}

The modules used by the main program include three that are especially
valuable and will be used in most other restoration programs that follow:
fftImage, align, and displayFDimage. It is necessary to know what they do,
but only the fftImage function needs to be looked at in detail, as it is the basis
of all the restoration methods.

The function fftImage has to do a lot of things before cvDFT is called to do
the actual work. First, the input image is assumed to be grey level, but will
be one channel. A Fourier transform operates on complex data, so a complex
copy of the input image needs to be built. The code creates a double precision
complex (IPL_DEPTH_64F) image, complexPart, out of the real and imaginary
parts of the input. In fact, the input is the real part, and the imaginary part is
always zero.

IplImage *fftImage (IplImage *img)

{

IplImage *realpart, *imgpart, *complexpart, *ret;

CvMat *ft;

int sizeM, sizeN;

CvMat tmp;

realpart = cvCreateImage(cvGetSize(img), IPL_DEPTH_64F, 1);

imgpart = cvCreateImage(cvGetSize(img), IPL_DEPTH_64F, 1);

complexpart = cvCreateImage(cvGetSize(img), IPL_DEPTH_64F, 2);

cvScale(img, realpart, 1.0, 0.0); // copy grey input image to realpart

cvZero(imgpart); // Set imaginary part to 0

cvMerge(realpart, imgpart, NULL, NULL, complexpart);//real,imag=complex

A DFT algorithm cannot always be applied to an arbitrary set of data. Many
algorithms require that the image have rows and columns that are a power of
two in size. Some require a square image. OpenCV provides a function that
returns the best size to use for an array of N points — cvGetOptimalDFTSize:

sizeM = cvGetOptimalDFTSize(img->height - 1);

sizeN = cvGetOptimalDFTSize(img->width - 1);

The DFT function needs a matrix, not an image. Create a matrix of the
correct size:

ft = cvCreateMat(sizeM, sizeN, CV_64FC2);

Chapter 7 ■ Image Restoration 269

The default origin for a Fourier transform is the upper-left corner. For
images, it is better to move the origin to the image center. This simply
means changing the sign of some of the components, and is done by the
origin_center function:

origin_center (complexpart);

Now copy the origin centered, complex image into the matrix by extracting
a pointer to a width × height submatrix tmp into the matrix ft and copying
the pixels from the image into that submatrix:

cvGetSubRect(ft, &tmp, cvRect(0,0, img->width, img->height));

cvCopy(complexpart, &tmp, NULL);

The matrix ft is the same size or bigger than the input data image. If it
is bigger, the part of the image to the right of the data image (the rightmost
columns extra to the input image) must be set to zero. Get a pointer to that
subimage and clear those values in the matrix:

cvGetSubRect(ft, &tmp, cvRect(img->width,0, ft->cols - img->width,

img->height));

if ((ft->cols - img->width) > 0) cvZero(&tmp);

Finally, the Fourier transform can be computed. There may be pixels between
the img->height row of the matrix and the last row that have not been
initialized. They could be set to zero as was done with the rightmost columns,
but the fourth parameter of cvDFT is the number of rows to process. Any data
beyond that point will be ignored.

cvDFT(ft, ft, CV_DXT_FORWARD, complexpart->height);

If needed, use cvMatToImage (not a standard OpenCV function, but part of
the library provided with this book), to convert a matrix of numbers into an
image:

ret = cvMatToImage (ft);

Don’t forget to free the allocated storage. Quite a lot was allocated and
should be returned if more processing is going to be done:

cvReleaseMat(&ft);

cvReleaseImage(&realpart);

cvReleaseImage(&imgpart);

cvReleaseImage(&complexpart);

return ret;

}

270 Chapter 7 ■ Image Restoration

7.3 The Inverse Filter

It was a useful exercise to show in detail how an image can be blurred,
since the reverse is about to be attempted. The blurring was accomplished by
convolving the image with the PSF. Although no noise was added, in the real
case it would be (Figure 7.1), giving the following process:

F = I × H + η (EQ 7.11)

where F is the Fourier transform of the blurred image, I is the Fourier transform
of the perfect image, and H is the Fourier transform of the PSF. The η term is
the noise, which can be characterized statistically but never known perfectly.
The multiplication in the frequency domain corresponds to a convolution of
the two images i and h.

The goal of image restoration is to reproduce the original image i as well as
possible, given f and h. Algebraically, it seems to make sense to divide by H
and ignore η in equation 7.11, giving:

F
H

= I (EQ 7.12)

The mathematics is really vastly more involved than this, but the end result
is the same: This is the inverse filter, which is the least-squares restoration of f.

In detail: given an input image f and a PSF in the form of an image h:

1. Compute the 2D FFT of the image f; call this F.

2. Compute the 2D FFT of the PSF image h; call this H.

3. Compute the new image G(i, j) = F(i, j)/H(i, j)

4. Compute the inverse FFT of G, giving the restored image g.

This can’t be done naively or serious problems will result. The image H is
certain to contain regions where the values are zero, and dividing by zero
usually has disastrous results. In fact, even if H becomes too small, the result
is that noise will dominate the restored image.

One solution is to check the norm of H at each pixel, and if it is below a
specified threshold value, the division is not performed. Instead, the values
from F can be left undisturbed, the pixel could be set to zero, or a default value
can be used.

For example, Figure 7.9 shows the result of applying the inverse filter to
the artificial image of Figure 7.8c. The filter demo program blurandInverse.c

reads an image and a file containing a PSF and blurs the image, saving the
result. Then it applies the inverse filter, displaying and saving the result of
that, too.

The implementation of the inverse filter uses a new twist on the Fourier
transform: the origin-centered Fourier transform. When the Fourier transform of

Chapter 7 ■ Image Restoration 271

an image is calculated, it is done in such a way that the origin (and the brightest
spot) is the pixel (0,0). This point is at the geometric center of an origin-centered
transform, making the image symmetrical about its own center. It is a very
easy thing to do: simply multiply every pixel (i, j) in the image by (−1)i+j before
computing the FFT. This may be more a matter of personal preference than of
necessity, but all the restoration modules use origin-centered transforms.

(a) (b)

Figure 7.9: Inverse filter restoration of Figure 7.8c. (a) The image as it appears after the
restoration. (b) The same image after thresholding to remove the worst of the clutter.
Note that the dot above the i is visible.

The inverse filter is very susceptible to noise, to the point where the inverse
restoration of a very noisy image could be subjectively worse than the original.
Adjustments to the threshold could be somewhat useful in these cases, and
noise filtering might be useful, but a more sophisticated method is probably a
better idea.

The inverse filter also depends on a good estimate of the PSF, of course, and
estimating the PSF can be difficult. For example, blurring the image and saving
it as a file can result in scaling effects being introduced into the image so that
the same PSF that caused the blur does not effectively undo it in an inverse
filter. This may be one reason why code commonly available on the Internet
for demonstrating the inverse filter both blurs and unblurs the image without
saving it, as was done in the blurandInverse.c program. Saving images as
TIFF files is a good idea, because it can store pixels as real numbers. JPEG files
actually introduce noise, through the built-in compression scheme.

7.4 The Wiener Filter

The Wiener filter [Helstrom, 1967] and its variants are designed to work in
cases where the noise has become significant. This filter in its complete form
requires that we know a good deal about the signal and the properties of the

272 Chapter 7 ■ Image Restoration

noise that infects it. Without going into great detail, an approximation of this
filter can be expressed as

I ≈
[

1
H

||H||2

||H||2 + K

]
F (EQ 7.13)

where ||H||2 is the norm of the complex PSF image H, and K is a constant. One
suggestion [Gonzalez, 1992] for a value of K is 2σ 2, where σ 2 is the variance of
the noise.

Figure 7.10 shows the Wiener filter restoration of the test image of Figure 7.8c.
Because this image has no noise associated with it, any advantage of the
Wiener filter is not clearly shown; indeed, in the absence of noise the Wiener
filter is reduced to the inverse filter. Thus, the face image first seen in Chapter 4
(Figure 4.4) was blurred and then restored using both the inverse and Wiener
filters. These results also appear in Figure 7.10. The image restored using the
inverse filter shows a grid pattern, which is absent in the Wiener restored
image.

(a) (b)

(c) (e)(d)

Figure 7.10: Wiener file restoration. (a) Restored test image. (b) The same image
thresholded. (c) Blurred version of the face image. (d) Inverse filter restoration. (e) Wiener
filter restoration. Note that the pattern in the background can be seen clearly.

Chapter 7 ■ Image Restoration 273

7.5 Structured Noise

In some cases the distortion imposed on an image has a regular pattern
associated with it. For example, when an electric motor is operated close to
a television or other video device, it is common to see a pattern of lines on
the screen. This is caused by the fact that the motor generates a signal that
interferes with the television, and the interference has a frequency associated
with it that is related to the speed of the motor.

There is a wide variety of causes for structured noise, and it can be quite a
problem. However, because the noise is periodic, the Fourier transform can be
used to determine where the peak frequencies are. The noise will correspond
to one of these, and it can be virtually eliminated by clearing those regions
in the frequency domain image that correspond to the noise frequencies, and
then back-transforming it into a regular image.

As a simple example, Figure 7.11a shows the face image with high-frequency
sinusoidal interference imposed on it. The Fourier transform of this image
(Figure 7.11b) shows a number of bright spots (spikes). A matching pair of
spikes appears in the upper-left and lower-right quarters of the image, and
these correspond to the periodic signal causing the pattern of diagonal lines.
To correct this, edit the Fourier domain image and set the two spikes to zero;
then apply an inverse FFT to obtain the space domain image. The result, after
some contrast improvement, appears in Figure 7.11d.

There are a number of questions still to be addressed. First among these
concerns exactly which spikes to remove, and unfortunately there is no good
answer. Experience with the appearance of Fourier domain images will help,
and for this purpose the fftlib.cprocedures will be very useful. In particular,
it will be quickly learned that the peak in the center of the image contains
much of the interesting information in the image, and must not be removed.
Periodic signals cause symmetrical spikes on each side of the central peak, and
though there can be many of these, they can be removed in pairs to see what
happens. When the correct spikes are found, the image will be improved by
their removal. Depending on the type of noise there could be more than one
pair of spikes to be removed.

The restoration in this figure was performed by the program snr.c (struc-
tured noise removal). This program computes the Fourier transform of the
input image, and then displays it on the screen. The user sets portions of
the frequency domain image to zero (black) by clicking the mouse on the
upper-left corner of a rectangular area to be darkened, dragging the mouse to
the lower-right of the region, and then releasing mouse button. To undo, type
a carriage return so that the selected portion will go black on the screen, and

274 Chapter 7 ■ Image Restoration

the process can be repeated. When all regions are set to black, type x and the
program will back transform the modified spectrum and display the result.

(a) (b)

(c) (d)

Figure 7.11: Example of structured noise removal. (a) Face image with an imposed
sinusoidal pattern. (b) Fourier transform of the noisy image, showing the two spikes
responsible for the pattern. (c) The regions of the fourier image to be removed. (d)
Restored image; the spikes were set to zero and then the inverse Fourier transform was
computed.

This results in the pixel at (32,32) and the one at (96,96) in the Fourier
transform of the corrupt face image being set to zero.

Just as one person’s weed is another’s flower, what constitutes noise is in the
eye of the beholder. One fairly common issue in document analysis is the exis-
tence of grid lines in the data. As a specific example, many types of pen recorder
plot lines in ink on a sheet of graph paper. The grid lines interfere with the
extraction of the plotted data lines, making them difficult to extract properly.

In this instance, knowledge of the behavior of the Fourier transform helps
a lot. The transform of a horizontal line appears like a vertical line in the

Chapter 7 ■ Image Restoration 275

frequency domain image, and a vertical line transform as a horizontal one.
Therefore, it seems like a variation of the snr.cprocedure would have a chance
of removing the grid lines. After creating the Fourier transform, remove those
pixels in the center rows and columns of the frequency domain image, taking
care not to remove pixels too close to the center peak. This is called a notch filter.

Figure 7.12a shows an image that was obtained by scanning an original
paper document. It is simply a handwritten note on graph paper. The goal is
to remove the grid lines as completely as possible. The Fourier transform of
the image (Figure 7.12b) is obtained, and the pixels within the specified notch
regions are set to zero (Figure 7.12c) before performing the inverse Fourier
transform. The result (Figure 7.12d) shows an astonishing lack of grid lines,
although it does display some artifacts of the process (ringing).

Using this method, it would be possible to remove patterns in either
direction — for example, lines on notepaper.

(a)

(c) (d)

(b)

Figure 7.12: Removal of grid lines using a notch filter. (a) Original scanned image. (b)
Fourier transform of scanned image. (c) Notches along the center lines, removing both the
vertical and horizontal lines. (d) The restored image.

276 Chapter 7 ■ Image Restoration

7.6 Motion Blur—A Special Case

If an image has been blurred due to the motion of either the camera or the
object, the PSF will be an extended blob with the long axis indicating the
direction of motion. While it is possible to use an inverse or Wiener filter
restoration in these cases, there is a special solution that should not be as
susceptible to noise.

If the motion can be assumed to be uniform and in the x (horizontal)
direction, a very nice expression [Gonzalez, 1992; Sondhi, 1972] can be used to
remove most of the blur without resorting to a Fourier transform: =0pt

I(y, x) ≈ f − 1
K

K − 1∑
k = 0

k∑
j = 0

f ′ (y, x − ma + (k − j)a)

+
m∑

j = 0

f ′ (y, x − ja)
(EQ 7.14)

where

f is the mean value of the blurred image f.

a is the distance of the blur.

K is the number of times that the distance a occurs in the image; that is,
the number of columns = Ka. K is approximated as an integer, where
necessary.

m is the integer part of x/a, for any specified horizontal position x.

f ′ (i,j) is the derivative of f at the point (i, j). This can be approximated by a
difference, as was done in Chapter 2.

As an example, Figure 7.13 shows this method applied to a blurred version
of the sky image (Figure 4.2). This image is blurred by about 20 pixels in
the horizontal direction. The restored version suffers from some artifacts but
is a noticeable improvement over the blurred image. The program motion.c

performed the restoration. When called, it requests the name of the input file
(to be restored) and a speed value. The speed value reflects the number of
pixels that pass a point during the time the image was acquired, and is mostly
a guess. The program restores the image for a range of speed values centered
at the one specified: if the value of 20 is entered, then the image is restored for
values 10–30 in increments of 1. After each restoration, the image is displayed,
allowing the user to select the best one.

The speed value can be estimated from the image, or arrived at by trial
and error. To estimate the amount of blur, look for an edge that is as close to
perpendicular to the direction of motion as possible. If the amount of motion
is significant, it should be possible to determine the original and final position
of the edge; that is, the location of the edge when the motion started (or the

Chapter 7 ■ Image Restoration 277

shutter opened) and its position when it stopped (the shutter closed). This
is illustrated in Figure 7.13d. From the expanded view of the edge, we can
see that motion appears to encompass about 19 pixels. The result of a motion
correction of 19 pixels (Figure 7.13e), 20 pixels (7.13c), and 21 pixels (7.13f)
shows that the best result was achieved with a value of 20.

(a) (c)

(d)

(b)

(e) (f)

Figure 7.13: Motion blur removal. (a) The original sky image. (b) The same image blurred
by about 20 pixels horizontally. (c) Restored, using the motion program. (d) Estimation of
the amount of motion by examining the vertical edge. The approximate start and end of
the edge can be seen in the blurred image. (e) The blurred image restored, assuming a
motion of 19 pixels. (f) Result of the restoration assuming 21 pixels.

7.7 The Homomorphic Filter— Illumination

Homomorphic filtering is a technique in which an image is transformed to
a new space or coordinate system in which the desired operation is simpler

278 Chapter 7 ■ Image Restoration

to perform. Specifically, the problem to be addressed is one of improving the
quality of an image that has been acquired under conditions of poor illumi-
nation. As mentioned in Chapter 4, illumination can have a very important
influence on the appearance of the image, and on what it can be used for. The
ideal situation would be to generate the original set of objects in an image
without regard to the impinging illumination. This can’t be done exactly or in
all cases, but some steps can be made to improve the situation.

An image is an array of measured light intensities, and is a function of
the amount of light reflected off the objects in the scene. The intensity is the
product of the reflectance of the object R and the intensity of the illumination I:

f (i, j) = I(i, j)R(i, j) (EQ 7.15)

The methods used so far for restoration involve using the Fourier transform,
which will not separate I from R; it would if they were summed, of course.
Fortunately, a sum can be created: Simply take the log of both sides:

log f (i, j) = log I(i, j) + log R(i, j) (EQ 7.16)

Now all that is needed is a way to separate these two components. A
simple observation will help: Illumination tends to vary slowly, or relatively
so, across an image. The reflectance, on the other hand, is characterized
by sharp changes, especially at boundaries (edges). This means that if the
low-frequency components (illumination) could be decreased, while increasing
the high-frequency (reflectance) components, the problem would be solved.
The Fourier transform is exactly what is needed to do this.

7.7.1 Frequency Filters in General
The use of the term ‘‘frequency’’ to describe parts of an image seems odd,
but the use of a Fourier transform means that the image must be viewed as
a signal, and so must possess something that corresponds to frequencies. A
spatial frequency is a measure of how a structure in an image repeats over a
distance. Sound can be thought of as the sum of various audio components,
each of which has a specific frequency; the Fourier transform determines how
much of each frequency (e.g., sine waves) comprises the sound. An image can
be thought of as the sum of spatially varying grey or color components, each
having a specific frequency. It is two dimensional, and the components sum
across the image, reinforcing brightness in some paces and cancelling out in
others, creating the light and dark regions that are seen.

High-frequency spatial components are small and correspond to edges,
pixels, and small regions. Low-frequency spatial components give overall
structure, consisting of objects and background features. Thus, using the
Fourier transform, it should be possible to filter out or enhance various

Chapter 7 ■ Image Restoration 279

spatial frequencies, should this be useful. In the Fourier transform of an
origin-centered image, the low-frequency information corresponds to the
region near the center of the image, and the frequency increases with distance
from the center. So, to remove low-frequency information, delete data near the
center of the Fourier-transformed image before back transforming.

The use of the Fourier transform as a filter to pass or block certain spatial fre-
quencies will be illustrated by example. Consider the example image first seen in
Figure 7.8a, consisting of the words The Fourier Transform. The origin-centered
Fourier transform of this image will have a peak at the center; let’s see what
happens when pixels near the center of the transform are set to zero.

Figure 7.14 a–c show the results of clearing pixels near the center peak of
the transform before back-transforming; pixels within a radius of 8, 16, and
32 pixels of the center (respectively) were affected. The effect on the image is
curious: The more of the center region that is cleared, the more the image seems
to consist of isolated lines and spots. The reason is that the outlying regions
of the Fourier transformed image corresponds to high-frequency information,
and removing high-frequency information affects details. On the other hand,
passing only the central region and setting to zero the remainder of the
Fourier transform allows the low-frequency information to be retained, while
removing the high frequencies. This is seen in Figure 7.15. Only the basic
outline or position of the objects remain, and details are progressively lost.
This is called a low-pass filter, with the former filter being a high-pass filter.

(a) (c)(b)

Figure 7.14: The high-pass filter. (a) Pixels within a radius of 8 of the center of the Fourier
transform were set to zero before back transforming. (b) Radius = 16. (c) Radius = 32.

280 Chapter 7 ■ Image Restoration

(a) (c) (d)(b)

Figure 7.15: The low-pass filter. (a) Pixels outside of a circle of radius 32 of the center of
the Fourier transform were set to zero, allowing only the center pixels to be used in the
inverse transform. (b) Radius = 16. (c) Radius = 8. (d) Radius = 2.

That a particular spatial frequency will correspond to points in the Fourier
transform that are a fixed distance from the center is true for origin-centered
transforms only. A frequency domain filter is an image having values that
correspond to the desired frequencies in the output. For example, the frequency
domain filter that was used to give Figure 7.14c has zeros in a disk of radius
32 at the center of the image, and ones everywhere else. Values less than one
will suppress the corresponding frequency in the output, and values greater
than one will enhance that frequency.

A band, containing any particular set of spatial frequencies, can be either
allowed to remain (band-pass filter) or be blocked (band-stop filter) to varying
degrees. This would correspond to a ring of one or zero pixels in the frequency
domain filter. In addition, a set of frequencies can be enhanced by increasing
their relative values in the Fourier transform image, instead of simply passing
or blocking them. This can be done at the same time as other frequencies are
reduced or blocked altogether.

This happens to be what we want to do for the homomorphic filter. The
high frequencies should be emphasized, so they will be increased. The low
frequencies correspond to illumination, and so will be decreased. This will be
called a high-emphasis filter, and its shape is shown in Figure 7.16a. Other such
filters could be used, and the shape of the filter can be changed to meet specific
needs [Stearns, 1988].

7.7.2 Isolating Illumination Effects
Now the homomorphic filter can be completed. The stages in processing are
as follows:

1. Take the log of all pixels in the image.

2. Compute the Fourier transform of the image obtained in 1.

Chapter 7 ■ Image Restoration 281

3. Apply the high-emphasis filter by multiplying the elements in the filter
mask by those in the Fourier transform image.

4. Compute the inverse Fourier transform.

5. Compute the exponential of all pixels; this reverses the logarithm of step
1. Stretch the contrast, if needed.

Figure 7.16 shows an application of the homomorphic filter to the face image
having an imposed sinusoidal illumination gradient (originally seen in Figure
4.4). The result is much clearer in the formerly dark areas, and the overall
contrast is better. The suppression of the bands is not complete, but appears
to be sufficient.

(a) (c)(b)

Figure 7.16: The homomorphic filter. (a) The shape of the high-emphasis filter, which is
multiplied element-by-element with the Fourier transform of the log or the original image.
The graph shows a cross-section through the center of the filter. (b) Test image: this is
the face image with sinusoidal illumination. (c) Result of homomorphic filtering. Detail is
much clearer, particularly in the areas that were dark.

7.8 Website Files
fftlib.c A library for computing Fourier transforms; needs fftlib.h

fftlib.h Include file for fftlib.c

highemphasis.exe High-emphasis filter

highpass.exe High-pass filter

lowpass.exe Low-pass filter

hiemphasis.c High-emphasis filter

homomorphic.exe Homomorphic filter

motion.exe Motion blur removal

282 Chapter 7 ■ Image Restoration

snr.exe Structured noise removal

blur.c Blur an image using a PSF

blurAndInverse.c Inverse filter demo

fft1d.c One-dimensional Fourier transform, OpenCV

hiemphasis.c High-emphasis filter

highpass.c High-pass filter

homomorphic.c Homomorphic filter

lowpass.c Low-pass filter

motion.c Motion blur removal

slow1.C Version of the Fourier transform

slow2.C Version of the Fourier transform

slow3.C Version of the Fourier transform

slow4.C Figure 7.6

snr.c Structured noise removal

blur2010.pgm Blurred FACE image

face.pgm FACE image

facepsf.pgm Point spread function for FACE blur

faces.pgm FACE with sine illumination

four.pgm Image of the word FOURIER

fourbl.pgm Blurred FOURIER image

fsn.pgm Structured noise image of FACE

grid2010.pgm Figure 7.12a

psf1.pgm Point spread function

psf1a.pgm Point spread function

psf2.pgm Point spread function

psf2a.pgm Point spread function

skym.pgm Motion-blurred image

Chapter 7 ■ Image Restoration 283

7.9 References

Andrews, H. C. and B. R. Hunt. Digital Image Restoration. Englewood Cliffs,
NJ: Prentice-Hall, 1977.

Andrews, H. C. ‘‘Digital Image Restoration: A Survey.’’ Computer 7, no. 5
(1974): 36–45.

Bracewell, R. The Fourier Transform and Its Applications. New York:
McGraw-Hill, 1965.

Brigham, E. O. The Fast Fourier Transform. Englewood Cliffs, NJ: Prentice-Hall,
1974.

Cooley, J. W. and J. W. Tukey. ‘‘An Algorithm for the Machine Calculation of
Complex Fourier Series.’’ Mathematical Computation 19 (1984): 297–301.

Geman, S. and D. Geman. ‘‘Stochastic Relaxation, Gibbs Distributions, and
Bayesian Restoration of Images.’’ IEEE Transactions on Pattern Analysis and
Machine Intelligence 6, no. 6 (1984): 721–741.

Gonzalez, R. C., and R. E. Woods. Digital Image Processing. Reading, MA:
Adison-Wesley, 1992.

Gull, S. F. and G. J. Daniell. ‘‘Image Reconstruction from Incomplete and Noisy
Data.’’ Nature 292 (1978): 686–690.

Hall, E. L. Computer Image Processing and Recognition. New York: Academic
Press, 1979.

Helstrom, C. W. ‘‘Image Restoration by the Method of Least Squares.’’ Journal
of the Optical Society of America 57, no. 3 (1967): 297–303.

Hunt, B. R. ‘‘The Application of Constrained Least Squares Estimation to
Image Restoration by Digital Computer.’’ IEEE Transactions on Computers
C-22, no. 9 (1973): 805–812.

Lee, H. C. ‘‘Review of Image-Blur Models in a Photographic System Using the
Principles of Optics.’’ Optical Engineering 29 (1990).

Macnaghten, A. M. and C. A. R. Hoare. ‘‘Fast Fourier Transform Free from
Tears.’’ The Computer Journal 20, no. 1 (1975): 78–83.

MacAdam, D. P. ‘‘Digital Image Restoration by Constrained Deconvolution.’’
Journal of the Optical Society of America 20, no. 12 (1970): 1617–1627.

Pavlidis, T. Algorithms for Graphics and Image Processing. Rockville, MD: Com-
puter Science Press, 1982.

Pratt, W. K. and F. Davarian. ‘‘Fast Computational Techniques for Pseudoin-
verse and Wiener Restoration.’’ IEEE Transactions on Computers C-26, no. 6
(1977): 636–641.

Pratt, W. K. ‘‘Generalized Wiener Filter Computation Techniques.’’ IEEE
Transactions on Computers C-21, no. 7 (1972): 636–641.

Sezan, M. I. and A. M. Tekalp. ‘‘Survey of Recent Developments in Digital
Image Restoration.’’ Optical Engineering 29, no. 5 (1990): 393–404.

Singleton, R. C. ‘‘On Computing the Fast Fourier Transform.’’ Communications
of the ACM 10, no. 10 (1967): 647–654.

284 Chapter 7 ■ Image Restoration

Slepian, D. ‘‘Restoration of Photographs Blurred by Image Motion.’’ Bell System
Technical Journal (1967): 2353–2362.

Stearns, S. D. and R. A. David. Signal Processing Algorithms. Englewood Cliffs,
NJ: Prentice-Hall, 1988.

Stockham, T. G. ‘‘Image Processing in the Context of a Visual Model.’’ Proceed-
ings of the IEEE 60 (1972): 828–841.

Van Cittert, P. H., ‘‘Zum Einfluß der Spaltbreite auf die Intensitätsverteilung
in Spektrallinien II.’’ Zeitschrift für Physik 69 (1931): 298–308.

C H A P T E R

8

Classification

8.1 Objects, Patterns, and Statistics

Until now, the discussion has surrounded images and the operations that can
be performed on them to enhance or otherwise modify them. The purpose
of the modification is not really relevant in general; the result must simply
meet some user-defined criteria of ‘‘goodness.’’ All this falls into the realm of
image processing and is very common these days, especially when images are
to be used by humans. Examples can be found in many forensic television
programs such as NCIS and in motion pictures. A famous scene in Blade Runner
depicts an investigator magnifying an image so that a reflection in a human
eye yields digits that can be read. This is impossible with imaging technology
available now, but it is an example of image processing. Another example
is the processing of Hubble Space Telescope data that gives such wonderful
color images.

Computer vision is more than that. It is the analysis of digital images so as to
extract information automatically. The extracted information may be trivially
simple, such as an answer to the question ‘‘What color is this?’’ or it may be
much more complex, such as ‘‘Whose face is this?’’

Computer vision depends on having a good image with at least some known
properties. Image processing is often used to enhance an image for further
processing by vision algorithms, and sometimes there are known parameters of
the camera and capture system that are used to permit more vision processing.
Knowing the nature of the sensor and the lens, for example, can help to

285

286 Chapter 8 ■ Classification

determine absolute distances within images. However, at its heart, computer
vision is about making measurements on images and/or determining what
objects appear within those images.

Many people have difficulty understanding why this is a hard problem.
After all, people recognize complex objects with apparent ease, and quickly.
Why is this hard for computers? The answer is that computers use pixels to
represent objects rather than some more natural representation that has more
structure. Raster images are fundamentally two-dimensional and discrete, and
are a poor way to represent an object. Figure 8.1 is an attempt to illustrate this.

255

14

29

255

11

165

255

29

238

255

217

241

254

231

240

254

221

240

22

225

234

0

215

234

37

222

232

246

233

235

0

235

255

14

16

255

11

135

255

29

236

255

217

244

254

231

238

254

221

236

22

225

233

0

215

234

37

222

227

246

233

227

0

235

255

5

16

255

18

135

255

110

236

255

232

244

254

231

238

254

229

236

22

232

233

0

232

234

37

226

227

246

233

227

0

236

26

5

16

19

18

135

227

110

236

0

232

244

18

231

238

0

229

236

7

232

233

4

232

234

13

226

227

15

233

227

8

236

26

5

11

19

18

56

227

110

213

0

232

243

18

231

239

0

229

231

7

232

227

4

232

227

13

226

226

15

233

217

8

236

26

12

11

19

15

56

227

65

213

0

228

243

18

237

239

0

232

231

7

232

227

4

234

227

13

231

226

15

233

217

8

233

21

12

11

10

15

56

1

65

213

6

228

243

5

237

239

4

232

231

5

232

227

9

234

227

4

231

226

9

233

217

5

233

21

12

8

10

15

15

1

65

68

6

228

234

5

237

237

4

232

232

5

232

226

9

234

223

4

231

204

9

233

219

5

233

21

11

8

10

12

15

1

188

68

6

234

234

5

235

237

4

233

232

5

235

226

9

228

223

4

232

204

9

233

219

5

213

4

11

8

10

12

15

5

188

68

8

234

234

3

235

237

8

233

232

4

235

226

9

228

223

17

232

204

0

233

219

12

213

4

11

15

10

12

15

5

188

18

8

234

39

3

235

188

8

233

186

4

235

220

9

228

105

17

232

200

0

233

171

12

213

4

7

15

10

14

15

5

166

18

8

243

39

3

236

188

8

233

186

4

236

220

9

233

105

17

238

200

0

231

171

12

220

5

7

15

4

14

15

4

166

18

2

243

39

0

236

188

24

233

186

42

236

220

39

233

105

49

238

200

38

231

171

50

220

5

7

9

4

14

29

4

166

19

2

243

15

0

236

36

24

233

33

42

236

25

39

233

51

49

238

22

38

231

14

50

220

5

8

9

4

14

29

4

74

19

2

246

15

0

241

36

24

231

33

42

236

25

39

232

51

49

234

22

38

236

14

50

229

5

8

9

4

14

29

4

74

19

9

246

15

78

241

36

110

231

33

71

236

25

78

232

51

87

234

22

104

236

14

97

229

5

8

11

4

14

20

4

74

14

9

246

11

78

241

26

110

231

33

71

236

17

78

232

25

87

234

19

104

236

17

97

229

5

9

11

4

21

20

4

112

14

9

236

11

78

236

26

110

238

33

71

239

17

78

238

25

87

238

19

104

245

17

97

233

3

9

12

21

20

11

112

14

9

236

11

187

236

26

186

238

33

184

239

17

139

238

25

131

238

19

153

245

17

174

11

233

3

9

17

12

21

21

11

112

15

9

236

16

187

236

14

186

238

2

184

239

16

139

238

18

131

238

16

153

245

5

174

233

3

23

17

12

27

21

11

221

15

9

243

16

187

241

14

186

239

2

184

241

16

139

241

18

131

240

16

153

242

5

174

232

7

23

17

10

27

21

6

221

15

124

243

16

212

241

14

207

239

2

211

241

16

202

241

18

208

240

16

225

242

5

154

232

7

10

53

10

64

42

6

205

8

124

243

9

212

244

9

207

235

31

211

241

20

202

243

16

208

240

17

225

237

31

154

239

16

10

53

11

64

42

14

205

8

207

243

9

218

244

9

219

235

31

211

241

20

217

243

16

222

240

17

238

237

31

225

239

7

23

53

10

27

42

6

221

8

124

243

9

212

241

9

207

239

211

241

20

202

241

16

208

240

17

225

242

31

154

232

31

16

10

228

11

64

137

14

205

19

207

243

10

218

244

17

219

235

5

211

241

10

217

243

20

222

240

11

238

237

18

225

239

16

29

228

11

165

137

14

238

19

207

241

10

218

240

17

219

240

5

211

234

10

217

234

20

222

232

11

238

235

18

225

235

14

29

228

11

165

137

29

238

19

217

241

10

231

240

17

221

240

5

225

234

10

215

234

20

222

232

11

233

235

18

235

235

Figure 8.1: The pixels in an image. What does the image represent?

The figure shows an array of numbers that represent an image. These
are grey-level pixel values, and are really how the data is presented to the

Chapter 8 ■ Classification 287

computer and the vision algorithms. What is this image? What objects appear
within it? From looking at the numbers, it is very hard to say. Figure 8.2 shows
the image in a form that we can more easily process (greys) and it is plain from
this that we have a picture of a face — Albert Einstein, in fact.

Figure 8.2: Rendering the data in Figure 8.1 as a grey-level image, we see that the 28x32
array of pixels is an image of Albert Einstein’s face.

It is generally easier to decompose or parse a complex object into components
than it is to synthesize low-level components into high-level complex objects
or ideas. So, drawing objects into an image (i.e., rendering) is easier than
the reverse, collecting pixels into related structures that represent objects.
Computer vision is all about connecting the dots, literally: collecting pixels
into logical structures that represent objects or portions of objects that can, in
turn, be connected.

Some basic definitions are needed in order to clarify how computer vision
will be carried out. Let’s define an object as something, a two- or three-
dimensional thing, that can appear in an image. Object recognition is the act
of finding a collection of pixels in an image that represents an object being
searched for, and the assigning of a label to the collection. The label is the
name of the object. So, as a simple case, when a car is recognized in an image,
an object recognition system will identify those pixels that are a part of the car
and give it the label ‘‘car.’’

A pattern can be thought of as a combination of qualities (data) that form a
characteristic arrangement. Patterns can occur in numbers, in pixels, sounds,
or even behavior patterns. Patterns are important in computer vision because
certain patterns of pixels represent specific objects in images. If those patterns
can be detected, then it is an indication of the occurrence of that object in the
picture. Sadly, characteristic patterns tend to be obscured by noise, scale, and
orientation issues, lighting, and other practical matters. The usual method used
within functioning vision systems is to collect simple patterns into low-level
objects, which in turn are grouped into higher levels until the object can be
built from the pieces. For instance, when trying to see faces in images, perhaps
it is simpler to look for eyes or noses and try to build faces from these parts.

288 Chapter 8 ■ Classification

Because of the nature of the data (noisy and variable) and the difficulties
in describing objects, vision algorithms are not perfect. Unlike, for example,
a sorting algorithm, which must always yield a sorted collection of numbers
upon demand, an object recognition algorithm usually works only sometimes.
If a face recognizer can find 95% of the faces in an image, then 95% is
the success rate, and it fails 5% of the time. Many things can cause failures,
including shadows, motion blur, occlusion, noise, and scale problems. The
developers of these systems generally know the success rates and often know
the causes of failure, too. Thus, vision algorithms tend to be characterized by
statistics, and frequently use statistics as an essential aspect of their function.
Indeed, one of the most important methods of object recognition uses statistical
pattern recognition, in which objects are characterized statistically using a set of
measurements.

Now that some basic definitions have been presented, it is time for an
essential aspect of computer vision to be made clear: Vision systems are always
looking for a specific set of objects. This makes things a lot easier for the designer of
the system. A vision system for counting cars on a freeway, for example, needs
to be able to recognize vehicles, and perhaps people, roads, and static objects
in the field of view. It does not have to recognize fish or camels, balloons, or
chairs. If any of those objects appears in an image, the system will not identify
them; indeed, these objects may interfere with the recognition of intended
objects. The set of objects to be recognized is sometimes called the domain of
the system or algorithm, and the behavior is to recognize an object or claim
that none of the target objects appear within the image. Behavior outside of
the domain, in other words, is not clearly defined.

8.1.1 Features and Regions
A crude but functional definition of a feature is something that can be measured
in an image. A feature is therefore a number or a set of numbers derived
from a digital image. The idea is that some objects belong to groups based
on each of these measurements. Color is a simple feature, for example. It
is a measurement (a determination of hue) and can, in fact, sometimes be
used to recognize objects. For example, Figure 8.3 shows an image of a
sample of carrots and tomatoes, carefully arranged to be isolated, but showing
illumination effects and color differences. Vision problem: find the tomatoes.

Using color as a feature, we note that tomatoes are redder than carrots.
Objects having a lot of red compared with other objects are more likely to be
tomatoes than carrots (or peas). So, as a solution to the problem, it is possible
to find isolated objects in the image, perhaps using an edge detector, and then
count the red pixels within each object. In this example, it will work. The
tomatoes can be isolated by thresholding hue at a value of 15/255. The result,
as shown simply in Figure 8.4, is that all tomatoes can be found.

Chapter 8 ■ Classification 289

Figure 8.3: An image of tomatoes and carrots. Which are the tomatoes?

Figure 8.4: The tomatoes found by using hue as a feature.

Technically, this is still image processing and enhancement. A vision task
would be to count the tomatoes, which can be done by counting the number of
regions in the image of Figure 8.4. It does seem to show that hue can be used
to solve the problem, though, and this is usually a part of the initial evaluation
of a proposed solution.

Features are associated with image regions. An object within an image has
a set of measurements (features) that can be used to characterize it. The initial
task in object recognition vision problems is to isolate part of the image that
might contain an object, measure its features, and determine which ones are
useful in characterizing it.

The way that vision problems are approached usually has the following
general form. A target is an object of the class being searched for; an example
of what is to be recognized.

1. Find a way to isolate objects in the image that might be targets. This is often
accomplished through edge detection, thresholding, region growing, or
some other segmentation method.

290 Chapter 8 ■ Classification

2. Segmentation will create a simpler image in which targets are intermixed
with other objects. Looking at the image, pick a feature that seems likely
to characterize the targets.

3. Measure all potential targets using the proposed feature. Question: Is
there a range of measured values that contain all the targets and no other
objects? If so, this feature is the one to use.

4. If not all the targets can be found using this feature, record the percentage
that can. Pick another feature and repeat from step 3.

It is possible to use more than one feature, so even if no one of them is
perfect, we’ll see that a set of merely acceptable ones can be just as good.

Let’s use this scheme on the carrots/tomatoes problem. Isolation of the
objects could be possible using edge detection or thresholding. Figure 5.1a
shows a thresholded image, using Otsu’s method (as in thr_glh.c). A surpris-
ing number of black regions are artifacts of the process, being neither carrots
nor tomatoes. Most of these are tiny; some are too large. Area can be used to
eliminate most of these, it would seem. Determining area requires a bit more
processing.

(a) (b)

Figure 8.5: Marking potential targets in an image. (Left) A thresholded version of
Figure 8.3. (Right) The regions that remain after selection using area. Each region is
marked with a distinct grey level.

Each of the black areas in Figure 8.5a is separated from the others by regions
of white pixels (background). A simple algorithm called a flood fill can identify
isolated sets of connected black pixels; each of these could be a target (tomato).
A basic recursive flood fill starts with a black pixel, and it recursively sets its
black neighbors to another value (a mark value), and their black neighbors,
and so on. In the present case, the target value (indicating an object, and to be
replaced by a mark) is 0, and the mark value is anything other than 0 (black,
object) and 255 (white, background). The result of a flood fill is that a region of

Chapter 8 ■ Classification 291

pixels that are connected to each other (a connected region) is given a particular
grey level. The code for this is:

void flood (IMAGE img, int i, int j, int target, int replace)

{

if (img->data[i][j] == target)

{

img->data[i][j] = 1;

img->data[i][j] = replace;

if (i+1 < img->info->nr) flood (img, i+1, j, target, replace);

if (j-1 >= 0) flood (img, i, j-1, target, replace);

if (j+1 < img->info->nc) flood (img, i, j+1, target, replace);

if (i-1 >= 0) flood (img, i-1, j, target, replace);

}

}

This particular implementation is slow and space consuming, but easy to
code. Faster versions can no doubt be found on the Internet. The flood function
requires that each pixel in the image be examined to see if it has the target
value; if so, a region is grown around that seed pixel.

Winnowing the regions using area is simple. After a flood fill has marked
a region with a new value M, the area of that region is simply the number of
M-valued pixels in the entire image.

int area (IMAGE x, int c)

{

int i,j,k=0;

for (i=0; i<x->info->nr; i++)

for (j=0; j<x->info->nc; j++)

if (x->data[i][j] == c) k++;

return k;

}

If the area is too small (say, less than 900 pixels) or too big (perhaps 3100
pixels or bigger), then all the marked pixels are cleared (set to 255):

void clear (IMAGE x, int c)

{

int i,j,k=0;

for (i=0; i<x->info->nr; i++)

for (j=0; j<x->info->nc; j++)

if (x->data[i][j] == c) x->data[i][j] = 255;

}

A final useful function would be remark, which will change the level of all
pixels having one specific value to another one. The purpose is to uniquely
mark a specified region. If there are a dozen regions on an image, it is useful

292 Chapter 8 ■ Classification

to know which ones are connected. Thus, we might mark the first connected
region we find with the value 1, the second with 2, and so on.

void remark (IMAGE x, int oldg, int newg)

{

int i,j,k=0;

for (i=0; i<x->info->nr; i++)

for (j=0; j<x->info->nc; j++)

if (x->data[i][j] == oldg)

x->data[i][j] = newg;

}

Now the first step — region identification — has the needed tools. The pro-
gram reg1.c identifies the regions in the image that might be tomatoes and
marks them with unique grey levels. Small regions are marked with values
from 90 and higher, large regions are marked from 230 and higher. In the
entire image, all pixels having a grey level of 90 belong to a single contiguous
region, as do those having levels of 91, 92, and so on. Question: Does the region
having level 90 correspond to a tomato?

So, we can return to the original issue: using color as a feature. Each pixel
in the region-processed image corresponds to a color pixel in the original, and
they both have the same coordinates. Pixels having a value of 90 in the region
processed image can be examined in the original to see what their color is. Is
there a similarity in hue within each region, and can that be used to classify
the region as a tomato or a carrot? Yes.

8.1.2 Training and Testing
Let’s look at the data. The image is scanned for pixels in the first region, which
have the value 90. For each of these, fetch the corresponding pixel from the
original color image and extract the RBG values. A mean for each color is
computed, and associated with the region, and then the process is repeated
for region 91, 92, and each other. Table 8.1 shows the results.

The values in the Area column are the number of pixels in each region.
The Truth column is interesting and essential; it is the real classification of the
object represented by the region. This was determined by a visual inspection
of the image. A superficial examination of these data does not yield an obvious
way to use them to determine perfectly which regions are carrots and which
are tomatoes. If a chart is created showing the region class versus the region
color, things become clearer.

Three scattergrams were created using the Microsoft Excel spreadsheet pro-
gram. A scattergram shows data points or classes plotted against one or more
features. Figure 8.6 shows the two classes, arbitrarily numbered 1 and 2, plotted
against the value of each of the color components. This clarifies the situation
rather well.

Chapter 8 ■ Classification 293

Table 8.1: Features for Classifying Vegetables

MARK AREA RED GREEN BLUE TRUTH

90 1634 138 46 52 Tomato

91 1384 152 53 60 Tomato

92 1634 130 54 49 Tomato

230 2663 143 104 74 Carrot

93 1452 127 47 48 Tomato

94 2273 181 105 81 Carrot

95 2364 179 110 83 Carrot

96 1374 136 55 53 Tomato

97 1580 132 46 53 Tomato

98 1834 133 47 49 Tomato

99 1658 149 59 63 Tomato

231 2581 174 107 83 Carrot

100 2137 134 46 52 Tomato

232 2721 180 104 78 Carrot

101 2417 138 56 57 Tomato

102 1662 129 46 55 Tomato

103 1599 125 46 50 Tomato

104 2253 132 45 51 Tomato

105 1933 123 42 46 Tomato

106 1789 131 44 51 Tomato

The value of the green component is very useful for distinguishing the two
classes, according to this figure. A vertical line can be drawn at green = 85
that has tomatoes on the left (smaller green value) and carrots on the right
(larger green value). This means that for this image, tomato regions have a
green component less than 85, and thus can be distinguished from carrots
using a simple threshold. The same appears to be true for blue, although the
gap between the two classes is smaller, and the threshold is about 70. The
red component is most difficult to use as a feature, possibly because red and
orange both contain significant red components. The tomatoes have red values
between 110 and 170, and so require two thresholds to classify the objects.
Figure 8.7 shows a classification of the regions according the blue component,
as just described.

294 Chapter 8 ■ Classification

(a) (b)

Scattering on RED Scattering on GREEN

Class

Gr
ee

n
va

lu
e

Red value

2.5
2

1.5
1

0.5
0

0 0 20 40 60 80 100 12050 100 150 200

2.5
2

1.5
1

0.5
0

Cl
as

s

(c)

Scattering on BLUE

Class

Bl
ue

 v
al

ue

0 20 40 60 80 100

2.5
2

1.5
1

0.5
0

Figure 8.6: Scattergrams showing the connection between object class and color.

Figure 8.7: Tomatoes classified using the blue color component only. All tomatoes are
found; no errors are encountered.

According to these scattergrams, only one color feature is necessary to
distinguish between a tomato and a carrot. However, this is based on only one
image. There would be little point in creating a vision system to analyze one
image, so an assumption is that the classifier will be applied to a large set of
images, one after the other, in some industrial or other real-world setting. So,
it would seem that there are issues to be considered: how much data is needed
to experiment with, how the values of features vary across images, and how
to find features that can be used, individually or in combination, to classify an
object in an image.

It is standard practice to measure and classify a set of data to establish a
normal range for the features to be used in automatic classification. This is what
is referred to as training, and it is an essential part of building a recognition

Chapter 8 ■ Classification 295

system for visual objects. The system learns — that is, establishes ranges for
the features that were selected for use — by being given a known object and
then identifying some pattern among the feature values. This works better if
a large number of objects and images are used in the training process, and
that means having a large set of classified objects on hand before the system is
even completed. This is called training data. It may turn out that some of the
selected features are not useful and will need to be discarded or replaced, and
this will require modifications to the system.

So, for each object in each test image, all the proposed features are measured
and stored. A classifier is built that uses these features to determine the class
of the objects as well as can be done. Rarely will this be perfect, but it could
be perfect for the training data. Finding out the actual rate of successful
classification must be done using a different set of data, not the training data,
because the system has been tuned specifically to recognize the training data
set. We must know the actual classifications for the test data, too, since we
need to determine how often the system returns the correct class. If we have
100 objects that are of known classes, then this set of data needs to be split
into two sets: one for training, one for testing. For the time being, they should
be split into two equal parts, but alternatives will be described starting in the
next section and in the remainder of the chapter.

8.1.3 Variation: In-Class and Out-Class
Part of the problem with visual classification is that objects do not look the
same in different images, in different orientations, and when seen through
different cameras. Examining the data for the carrot problem, it is easy to see
that tomatoes have a variety of different values for each of the features we have
measured so far: color (red, green, blue) and area. Indeed, no two tomatoes
have the same values for these four features. Consider the green component
of tomato regions: the values in each row of the following table are an average
of the green components of all pixels in the region, meaning that even within
each region they are not all the same. The means over the various regions are
not the same either.

GREEN AREA

MEAN OVER ALL TOMATOES 48.80 1756.00

STANDARD DEVIATION 4.95 299.79

MEAN OVER ALL CARROTS 106.0 2520.40

STANDARD DEVIATION 2.28 173.16

Samples of features such as these usually follow a statistical normal distri-
bution. This is the famous bell-shaped curve, where the mean is in the center
and the standard deviation specifies the width of the bell. The variation of
the measurements is greater if the bell is wide, of course. A narrow range of

296 Chapter 8 ■ Classification

values, or a small standard deviation, is desired because it corresponds to an
easier thresholding problem. It would also mean that the feature values would
be less likely to overlap with those of other objects. A large distance between
means of classes to be separated is important, too.

The situation of Figure 8.8a is a desirable one for a classification problem.
Here, classes P and Q have very distinct means and a relatively small standard
deviation, and so the feature values involved have a very small region where
they can overlap. In this region it is not possible to accurately identify the class
of the object from this feature. The situation of Figure 8.8b is much worse,
because the means of the two distributions are closer together and the area
of overlap is larger. There will be a greater proportion of measurements that
fall into this ambiguous area. The best threshold to use is the feature value
that corresponds to the point of intersection of the two normal curves, but in
Figure 8.8b it seems certain this will not yield a correct classification in all cases.

Overlap

(a)

Class P

Class Q

(b)

Threshold

Figure 8.8: (a) The distribution of feature values between two classes, P and Q. The
overlap between these distributions is small, meaning that this feature alone can
distinguish between these classes. (b) A larger overlap area increases the number of
feature measurements that are ambiguous. The vertical line here shows the location of
the likely best threshold.

If one feature does not distinguish between the classes, then perhaps two
will. As an example, let’s use a classic set of data from many years ago, the
Iris data set [Fisher, 1936; Anderson, 1935]. These data appear in Table 8.2 as
numbers, and we’ll not be concerned here with how the measurements were
obtained. The interesting thing is how the data can be used to distinguish
between three species of Iris: setosa, versicolor, and virginica. The measurements
are width and length of petals and sepals, which are anatomical features of
any flower, as illustrated in Figure 8.9a.

That no single feature can be used to classify all instances into a correct
category can be established using scattergrams, or even by examining the data.
Which combination is best is a harder question to answer, and how to tell is an
interesting process to observe. Plotting pairs of features is useful in this case,
and showing the class of the object as color in the scattergram gives effectively
a third dimension to the plot, as shown in Figure 8.9b. Note that a straight line
can be drawn that separates the red class (setosa) from the blue (versicolor), but
no such line exists between the blue and the green (virginica).

Ta
b

le
8.

2:
Th

e
Iri

s
da

ta
se

t.

SE
P

A
L

P
ET

A
L

CL
A

SS
LE

N
G

TH
W

ID
TH

LE
N

G
TH

W
ID

TH

5.
1

3.
5

1.
4

0.
2

se
to

sa
4.

9
3.

0
1.

4
0.

2
se

to
sa

4.
7

3.
2

1.
3

0.
2

se
to

sa
4.

6
3.

1
1.

5
0.

2
se

to
sa

5.
0

3.
6

1.
4

0.
2

se
to

sa
5.

4
3.

9
1.

7
0.

4
se

to
sa

4.
6

3.
4

1.
4

0.
3

se
to

sa
5.

0
3.

4
1.

5
0.

2
se

to
sa

4.
4

2.
9

1.
4

0.
2

se
to

sa
4.

9
3.

1
1.

5
0.

1
se

to
sa

5.
4

3.
7

1.
5

0.
2

se
to

sa
4.

8
3.

4
1.

6
0.

2
se

to
sa

4.
8

3.
0

1.
4

0.
1

se
to

sa
4.

3
3.

0
1.

1
0.

1
se

to
sa

5.
8

4.
0

1.
2

0.
2

se
to

sa
5.

7
4.

4
1.

5
0.

4
se

to
sa

5.
4

3.
9

1.
3

0.
4

se
to

sa
5.

1
3.

5
1.

4
0.

3
se

to
sa

5.
7

3.
8

1.
7

0.
3

se
to

sa
5.

1
3.

8
1.

5
0.

3
se

to
sa

5.
4

3.
4

1.
7

0.
2

se
to

sa
5.

1
3.

7
1.

5
0.

4
se

to
sa

4.
6

3.
6

1.
0

0.
2

se
to

sa
5.

1
3.

3
1.

7
0.

5
se

to
sa

4.
8

3.
4

1.
9

0.
2

se
to

sa

SE
P

A
L

P
ET

A
L

CL
A

SS
LE

N
G

TH
W

ID
TH

LE
N

G
TH

W
ID

TH

7.
0

3.
2

4.
7

1.
4

ve
rs

ic
ol

or
6.

4
3.

2
4.

5
1.

5
ve

rs
ic

ol
or

6.
9

3.
1

4.
9

1.
5

ve
rs

ic
ol

or
5.

5
2.

3
4.

0
1.

3
ve

rs
ic

ol
or

6.
5

2.
8

4.
6

1.
5

ve
rs

ic
ol

or
5.

7
2.

8
4.

5
1.

3
ve

rs
ic

ol
or

6.
3

3.
3

4.
7

1.
6

ve
rs

ic
ol

or
4.

9
2.

4
3.

3
1.

0
ve

rs
ic

ol
or

6.
6

2.
9

4.
6

1.
3

ve
rs

ic
ol

or
5.

2
2.

7
3.

9
1.

4
ve

rs
ic

ol
or

5.
0

2.
0

3.
5

1.
0

ve
rs

ic
ol

or
5.

9
3.

0
4.

2
1.

5
ve

rs
ic

ol
or

6.
0

2.
2

4.
0

1.
0

ve
rs

ic
ol

or
6.

1
2.

9
4.

7
1.

4
ve

rs
ic

ol
or

5.
6

2.
9

3.
6

1.
3

ve
rs

ic
ol

or
6.

7
3.

1
4.

4
1.

4
ve

rs
ic

ol
or

5.
6

3.
0

4.
5

1.
5

ve
rs

ic
ol

or
5.

8
2.

7
4.

1
1.

0
ve

rs
ic

ol
or

6.
2

2.
2

4.
5

1.
5

ve
rs

ic
ol

or
5.

6
2.

5
3.

9
1.

1
ve

rs
ic

ol
or

5.
9

3.
2

4.
8

1.
8

ve
rs

ic
ol

or
6.

1
2.

8
4.

0
1.

3
ve

rs
ic

ol
or

6.
3

2.
5

4.
9

1.
5

ve
rs

ic
ol

or
6.

1
2.

8
4.

7
1.

2
ve

rs
ic

ol
or

6.
4

2.
9

4.
3

1.
3

ve
rs

ic
ol

or

SE
P

A
L

P
ET

A
L

CL
A

SS
LE

N
G

TH
W

ID
TH

LE
N

G
TH

W
ID

TH

6.
3

3.
3

6.
0

2.
5

vi
rg

in
ic

a
5.

8
2.

7
5.

1
1.

9
vi

rg
in

ic
a

7.
1

3.
0

5.
9

2.
1

vi
rg

in
ic

a
6.

3
2.

9
5.

6
1.

8
vi

rg
in

ic
a

6.
5

3.
0

5.
8

2.
2

vi
rg

in
ic

a
7.

6
3.

0
6.

6
2.

1
vi

rg
in

ic
a

4.
9

2.
5

4.
5

1.
7

vi
rg

in
ic

a
7.

3
2.

9
6.

3
1.

8
vi

rg
in

ic
a

6.
7

2.
5

5.
8

1.
8

vi
rg

in
ic

a
7.

2
3.

6
6.

1
2.

5
vi

rg
in

ic
a

6.
5

3.
2

5.
1

2.
0

vi
rg

in
ic

a
6.

4
2.

7
5.

3
1.

9
vi

rg
in

ic
a

6.
8

3.
0

5.
5

2.
1

vi
rg

in
ic

a
5.

7
2.

5
5.

0
2.

0
vi

rg
in

ic
a

5.
8

2.
8

5.
1

2.
4

vi
rg

in
ic

a
6.

4
3.

2
5.

3
2.

3
vi

rg
in

ic
a

6.
5

3.
0

5.
5

1.
8

vi
rg

in
ic

a
7.

7
3.

8
6.

7
2.

2
vi

rg
in

ic
a

7.
7

2.
6

6.
9

2.
3

vi
rg

in
ic

a
6.

0
2.

2
5.

0
1.

5
vi

rg
in

ic
a

6.
9

3.
2

5.
7

2.
3

vi
rg

in
ic

a
5.

6
2.

8
4.

9
2.

0
vi

rg
in

ic
a

7.
7

2.
8

6.
7

2.
0

vi
rg

in
ic

a
6.

3
2.

7
4.

9
1.

8
vi

rg
in

ic
a

6.
7

3.
3

5.
7

2.
1

vi
rg

in
ic

a

C
on

tin
ue

d

Ta
b

le
8.

2:
(c

on
tin

ue
d

)

SE
P

A
L

P
ET

A
L

CL
A

SS
LE

N
G

TH
W

ID
TH

LE
N

G
TH

W
ID

TH

5.
0

3.
0

1.
6

0.
2

se
to

sa
5.

0
3.

4
1.

6
0.

4
se

to
sa

5.
2

3.
5

1.
5

0.
2

se
to

sa
5.

2
3.

4
1.

4
0.

2
se

to
sa

4.
7

3.
2

1.
6

0.
2

se
to

sa
4.

8
3.

1
1.

6
0.

2
se

to
sa

5.
4

3.
4

1.
5

0.
4

se
to

sa
5.

2
4.

1
1.

5
0.

1
se

to
sa

5.
5

4.
2

1.
4

0.
2

se
to

sa
4.

9
3.

1
1.

5
0.

2
se

to
sa

5.
0

3.
2

1.
2

0.
2

se
to

sa
5.

5
3.

5
1.

3
0.

2
se

to
sa

4.
9

3.
6

1.
4

0.
1

se
to

sa
4.

4
3.

0
1.

3
0.

2
se

to
sa

5.
1

3.
4

1.
5

0.
2

se
to

sa
5.

0
3.

5
1.

3
0.

3
se

to
sa

4.
5

2.
3

1.
3

0.
3

se
to

sa
4.

4
3.

2
1.

3
0.

2
se

to
sa

5.
0

3.
5

1.
6

0.
6

se
to

sa
5.

1
3.

8
1.

9
0.

4
se

to
sa

4.
8

3.
0

1.
4

0.
3

se
to

sa
5.

1
3.

8
1.

6
0.

2
se

to
sa

4.
6

3.
2

1.
4

0.
2

se
to

sa
5.

3
3.

7
1.

5
0.

2
se

to
sa

5.
0

3.
3

1.
4

0.
2

se
to

sa

SE
P

A
L

P
ET

A
L

CL
A

SS
LE

N
G

TH
W

ID
TH

LE
N

G
TH

W
ID

TH

6.
6

3.
0

4.
4

1.
4

ve
rs

ic
ol

or
6.

8
2.

8
4.

8
1.

4
ve

rs
ic

ol
or

6.
7

3.
0

5.
0

1.
7

ve
rs

ic
ol

or
6.

0
2.

9
4.

5
1.

5
ve

rs
ic

ol
or

5.
7

2.
6

3.
5

1.
0

ve
rs

ic
ol

or
5.

5
2.

4
3.

8
1.

1
ve

rs
ic

ol
or

5.
5

2.
4

3.
7

1.
0

ve
rs

ic
ol

or
5.

8
2.

7
3.

9
1.

2
ve

rs
ic

ol
or

6.
0

2.
7

5.
1

1.
6

ve
rs

ic
ol

or
5.

4
3.

0
4.

5
1.

5
ve

rs
ic

ol
or

6.
0

3.
4

4.
5

1.
6

ve
rs

ic
ol

or
6.

7
3.

1
4.

7
1.

5
ve

rs
ic

ol
or

6.
3

2.
3

4.
4

1.
3

ve
rs

ic
ol

or
5.

6
3.

0
4.

1
1.

3
ve

rs
ic

ol
or

5.
5

2.
5

4.
0

1.
3

ve
rs

ic
ol

or
5.

5
2.

6
4.

4
1.

2
ve

rs
ic

ol
or

6.
1

3.
0

4.
6

1.
4

ve
rs

ic
ol

or
5.

8
2.

6
4.

0
1.

2
ve

rs
ic

ol
or

5.
0

2.
3

3.
3

1.
0

ve
rs

ic
ol

or
5.

6
2.

7
4.

2
1.

3
ve

rs
ic

ol
or

5.
7

3.
0

4.
2

1.
2

ve
rs

ic
ol

or
5.

7
2.

9
4.

2
1.

3
ve

rs
ic

ol
or

6.
2

2.
9

4.
3

1.
3

ve
rs

ic
ol

or
5.

1
2.

5
3.

0
1.

1
ve

rs
ic

ol
or

5.
7

2.
8

4.
1

1.
3

ve
rs

ic
ol

or

SE
P

A
L

P
ET

A
L

CL
A

SS
LE

N
G

TH
W

ID
TH

LE
N

G
TH

W
ID

TH

7.
2

3.
2

6.
0

1.
8

vi
rg

in
ic

a
6.

2
2.

8
4.

8
1.

8
vi

rg
in

ic
a

6.
1

3.
0

4.
9

1.
8

vi
rg

in
ic

a
6.

4
2.

8
5.

6
2.

1
vi

rg
in

ic
a

7.
2

3.
0

5.
8

1.
6

vi
rg

in
ic

a
7.

4
2.

8
6.

1
1.

9
vi

rg
in

ic
a

7.
9

3.
8

6.
4

2.
0

vi
rg

in
ic

a
6.

4
2.

8
5.

6
2.

2
vi

rg
in

ic
a

6.
3

2.
8

5.
1

1.
5

vi
rg

in
ic

a
6.

1
2.

6
5.

6
1.

4
vi

rg
in

ic
a

7.
7

3.
0

6.
1

2.
3

vi
rg

in
ic

a
6.

3
3.

4
5.

6
2.

4
vi

rg
in

ic
a

6.
4

3.
1

5.
5

1.
8

vi
rg

in
ic

a
6.

0
3.

0
4.

8
1.

8
vi

rg
in

ic
a

6.
9

3.
1

5.
4

2.
1

vi
rg

in
ic

a
6.

7
3.

1
5.

6
2.

4
vi

rg
in

ic
a

6.
9

3.
1

5.
1

2.
3

vi
rg

in
ic

a
5.

8
2.

7
5.

1
1.

9
vi

rg
in

ic
a

6.
8

3.
2

5.
9

2.
3

vi
rg

in
ic

a
6.

7
3.

3
5.

7
2.

5
vi

rg
in

ic
a

6.
7

3.
0

5.
2

2.
3

vi
rg

in
ic

a
6.

3
2.

5
5.

0
1.

9
vi

rg
in

ic
a

6.
5

3.
0

5.
2

2.
0

vi
rg

in
ic

a
6.

2
3.

4
5.

4
2.

3
vi

rg
in

ic
a

5.
9

3.
0

5.
1

1.
8

vi
rg

in
ic

a

Chapter 8 ■ Classification 299

(a) (b)

Figure 8.9: (a) The anatomy of a flower, showing the petals and sepals that are key to
the Iris data set. (b) A scattergram of Sepal length vs. petal length for the three classes.
Color codes the classes; note the spatial groupings.

A line breaks the green-blue region into two parts such that almost all green
points are on one side and almost all blue points are on the other. This could
be used to distinguish between the two classes with a small error. The line
that does this is not horizontal, but that does not matter. This is called a linear
discriminant and is commonly used in data classification and machine learning.
There are many references to this technique in the literature. It is, of course,
just one of many possible methods for classifying data.

8.2 Minimum Distance Classifiers

Looking again at the scattergram of Figure 8.9b, note that the data are grouped
into two-dimensional regions such that it is possible to draw a curve that
surrounds each class. Of course, such a curve can get very complex, and the
curve would only surround the points we knew about. A new object and set
of measurements may lie well outside of the curve. If an unknown object is
measured and if the measurements form a point that falls inside that curve,
then it probably should be classified with the others within the curve.

Because the curve is too complex to identify and hard to use as a classifier,
we can introduce a simpler scheme: an unidentified region that is classified
according to how far away it is (as a point) from any of the other points in the
training set. Depending on how ‘‘how far away’’ is defined, this could work
pretty well. This is what is commonly known as distance, and there are several
reasonable ways to define and implement it.

300 Chapter 8 ■ Classification

8.2.1 Distance Metrics
The common, intuitive definition of distance is called Euclidean distance,
because of Euclid’s connection with many other common geometric con-
cepts. It should be (and was in the past) called the Pythagorean distance because
it uses the famous formula for the hypotenuse. The distance between a point
P = (p1, p2) and a point Q = (q1, q2) is:

d =
√

(p1 − q1)2 + (p2 − q2)2 (EQ 8.1)

For points in a space having more than two dimensions, say N dimensions,
this formula generalizes as:

((p1 − q1)2 + (p2 + q2)2 + · · · + pN + qN)2)
1
2 =

√√√√ N∑
i = 1

(pi − qi)2 (EQ 8.2)

This is the distance ‘‘as the crow flies,’’ and while it makes sense in everyday
life, there are problems with it in images. The main one is that pixel locations are
integers, whereas the distance between pixels can be floating point. Another
practical problem is that this calculation requires a square root operation,
which is likely to take a hundred times longer to calculate than a simple
integer operation. It is true that computers are faster than they used to be, but
images have gotten bigger, too. Therefore, it is usual to omit the square root
and work with d2 whenever possible.

A commonly used distance measure when using pixels is the 8-distance.
This is the maximum of the horizontal and vertical difference between the
coordinates of the pixel; or, for the previously defined P and Q:

d8 = max(|p1 − q1|, |p2 − q2|) (EQ 8.3)

One way to think of this is as the number of pixels between P and Q. It
is called 8-distance because the path traced between P and Q uses the eight
discrete directions that are possible on a discrete grid.

If there is an 8-distance, then why not a 4-distance? There is, and it is
also called Manhattan distance or city block distance. It is the distance in pixels
between P and Q using only up/down and left/right directions (4 connected
pixels). Mathematically:

d4 = |p1 − q1| + |p2 − q2| (EQ 8.4)

Finally, at least for the purposes here, there is the most exotic, complex,
and useful distance measure: Mahanalobis distance. It is difficult to explain
in the general case, but for specific examples in classification it is more
obvious. Consider the data in Table 8.1 again. If P and Q are the first two

Chapter 8 ■ Classification 301

entries, tomatoes both, and the area and the green component are used in a
classification, then the data points are:

P = (1634, 46)

Q = (1384, 53)

The Euclidean distance between these two is:√
(1634 − 1384)2 + (46 − 53)2 = √

62500 + 49 − 250.1

Now change the green component of P by 1 to (1634, 45). The distance
between P and Q is now 250.13. Changing the area component by 1 so that
P = (1635, 46) changes the P − Q distance to 251.1. This shows that a change
in the first coordinate makes a bigger difference in the distance than does a
change in the second. Or in other words, the scales of the two coordinate axes
are different. This is very common in computer vision problems, and it really
does make sense. Why would we expect that each of the measurements would
have units of the same size?

Normalizing with respect to scale can be done using statistics. The standard
deviation is a measure of variability, or what the range of values is. Dividing
sample values by the standard deviation should narrow the range of values,
and convert the units to universal ones. This is the basic idea behind Mahanalo-
bis distance. For example, consider the same points P and Q as before and the
normalized points P’ and Q’. The overall standard deviations are:

sarea = 429.5 sgreen = 25.2

The points are:

P = (1634, 46) Q = (1384, 53) distance (P, Q) = 250.1

P′ = (3.8, 1.83) Q′ = (3.2, 2.1) distance (P′, Q′) = 0.64

The standard deviations are used to normalize the raw sample values before
computing distance. It’s actually more complex than that; reality tends to
make the math harder. The formula for computing the Mahanalobis distance
between P and Q is:

dM(P, Q) =
√

(P − Q)TS−1(P − Q) (EQ 8.5)

which is a matrix equation, in which P and Q are the points (vectors) for which
the distance is being computed, (P − Q)T is the transpose of the difference of
the vectors, and S is the covariance matrix.

The variance is the mean of the squared distances between a value and the
mean of those values:

VAR =

n∑
i = 1

(Pi − µi)(Pi − µi)

n − 1
(EQ 8.6)

302 Chapter 8 ■ Classification

When two (or more) values are involved, this calculation can include
combinations of the variables. In the case of P and Q:

COV =

n∑
i = 1

(Pi − µi)(Qi − µi)

n − 1
(EQ 8.7)

So, covariance is a generalization of variance for multiple variables. The
Mahanalobis distance is much more computationally expensive than the other
distance measures, but it does have the important advantage of being scale
independent, so is often used. However, for simplicity many people use
Euclidean distance, too, and without loss of generality most of the rest of
the examples will use Euclidean distance. Any distance measure may be
substituted, of course.

8.2.2 Distances Between Features
Many pattern recognition tasks use a large number of features to distinguish
between many classes. The Iris data set has four features, which is too many
to visualize in a straightforward way, to characterize three classes. This data
set will be used to illustrate distance-based classifiers, starting with the nearest
neighbor classifier.

Given N classes C1, C2, . . . , CN and M features F1 .. FM, consider the clas-
sification of an object, P. Measure all features for this object and create an
M-dimensional vector, v, from them. Feature vectors for all objects in all N
classes have also been created; the first such in class C1 will be C1

1, the eighth
one in class 3 will be C3

8, and so on. Classification of P by the nearest neighbor
method involves calculating the distances between v and all feature vectors
for all the classes. The class of the feature vector having the minimum distance
from v will be assigned to v.

The name of the method is very descriptive. The class of an unknown target
will be the same as that of its nearest neighbor in feature space. Let’s see how
this works using the Iris data set. First, the set needs to be broken into training
data and test data: select the first half of the data for each class to be training
data, and the last half as test data.

Next, feature vectors are created from the training data items. There are
four features, so each vector has four components. This vector is compared
against (i.e., the distance is computed to) all the training data vectors, and the
class of the one with smallest distance is saved: this will be the class given to
the target. This is done for each of the test data items, and success rates are
computed; the raw success rate, the number of correct classifications divided
by the number of test data items, is a good indicator of how good the features
are and of how well the classifier will work overall.

Chapter 8 ■ Classification 303

There is another, better, way to evaluate the results. A confusion matrix is a
table in which each column represents an actual class, and each row represents
a class delivered by the classifier (an outcome). For the Iris data experiment,
the confusion matrix is:

SETOSA VERSICOLOR VIRGINICA

SETOSA 25 0 0

VERSICOLOR 0 24 3

VIRGINICA 0 1 22

The columns add up to the number of elements in each class, and the rows
add up to the number of classifications that the classifier made to each class.
The trace (sum of the elements along the diagonal) is the number of correct
classifications, and the success rate is the trace divided by the total number of
trials. In this instance, the success rate is nearly 95%, which is pretty good.

The nearest neighbor method is commonly implemented for a classifier
because it is simple and gives pretty good results. However, if one neighbor
gives good results, why not use many neighbors? This simple thought leads
to the k-nearest neighbor method, in which the class is determined by a vote
between the nearest k neighbors in feature space. This is a little more work,
and can lead to ties in some cases. There are a two main ways to implement
this: compute all distances and then sort them into descending order and
read off the smallest k of them, or keep only the smallest k in a table and
test/insert after every distance calculation. The example program provided
(nkn.c) uses the first method. This allows the specification of k to change
without much modification of the program so that the effect of changes to k
can be explored.

The k-nearest neighbor algorithm should yield the same results as nearest
neighbor for k = 1; this is a test of correctness. The results for the Iris data are
as follows:

K SUCCESS K SUCCESS

1 95% 12 93%

2 92% 13 95%

3 93% 14 93%

4 95% 15 93%

5 92% 16 95%

6 92% 17 96%

Continued

304 Chapter 8 ■ Classification

(continued)

K SUCCESS K SUCCESS

7 93% 18 96%

8 95% 19 95%

9 95% 20 95%

10 93% 21 95%

11 93% 22 92%

The success of the k-nearest neighbor method depends on the way the data
points are scattered near the overlap areas. In this case, it seems no better than
the simple nearest neighbor method, but this is hard to predict in general, and
it will be better sometimes.

The nearest centroid method uses many points as a basis for comparison, but it
combines this with an ease of calculation that makes it attractive. The centroid
is the point in a set of feature data that is in some sense the mean value.
This point is a good representation of the entire set if any such place exists.
The coordinates of the centroid are the mean values of the coordinates of
all the points in the set; that is, the first coordinate of the centroid is the mean
of all the first coordinates, and so on. For the Iris data set, this means that there
are three centroids, one for each set. They are:

Centroid 1 = (5.028000, 3.480000, 1.460000, 0.248000)

Centroid 2 = (6.012000, 2.776000, 4.312000, 1.344000)

Centroid 3 = (6.576000, 2.928000, 5.639999, 2.044000)

So, the nearest centroid classifier computes the distance between the sample
point and the centroids, and the centroid at the smallest distance represents
the classification. This has fewer computations at classification time, because
the centroids are pre-computed and there is a need for only one distance
calculation per class.

The results of the nearest centroid classifier for the Iris data set are precisely
the same as for the nearest neighbor classifier. This will not be true for all
data sets.

8.3 Cross Validation

Splitting the data sets into training and testing sets is necessary to avoid
getting inflated success rates. One would expect high success on the data used
for training. In the nearest neighbor classifier, for example, the success rate

Chapter 8 ■ Classification 305

on the training data should be 100%, because each of the points will be a
distance of zero from at least one other — itself. Still, the selection of training
versus test data is arbitrary, and the two data sets could be exchanged without
distorting the results. If this is done for the Iris data using the nearest neighbor
classifier, the results become as follows:

SETOSA VERSICOLOR VIRGINICA

SETOSA 25 0 0

VERSICOLOR 0 23 2

VIRGINICA 0 2 23

The success rate is the same as before, but the details of the confusion matrix
are different. Repeating the classification with the roles of the testing and
training sets reversed gives us two different trials, though, and should give
us more confidence, especially since there is relatively little data here. This
process could be described as a 2-way (or 2-fold) cross validation.

The general description of cross validation is a process for partitioning data
repeatedly into distinct training and testing sets. There are many ways to do
this, some of them wrong. Any partition that uses the same samples in both
sets would normally be in error, for example, and creating new data points
based on statistical samples may in some instances be fine, but is not cross
validated. Cross validation takes the data that exists and partitions it into
training/testing sets multiple times so that the sets are different.

An n-way cross validation breaks the data into n more-or-less equal parts. Then
each of these in turn is used as test data, while all the other parts together are
used as training data. This gives n results, and the overall result is the average
of those n. The Iris data set has 150 samples in all, so a 5-way cross validation
would provide a convenient partitioning into 5 groups of 30 points each. There
is no rule that says there have to be exactly the same number of samples in
each set, although there should be as many examples of each class as possible.

The program cross5.cworks the same way as the nearest neighbor program,
except that it reads all the Iris data into one large array at the beginning and
then partitions it before each experiment. The result is five distinct experiments
with five confusion matrices and success rates:

PARTITION 1 PARTITION 2 PARTITION 3 PARTITION 4 PARTITION 5

SUCCESS 96.7 96.7 93.3 93.3 100.0

This yields an average of 96%.
Cross validation can be done using random samples of the data, too. A test

set would be built from random selections of the full data set, making sure

306 Chapter 8 ■ Classification

not to choose the same item more than once. All the items not selected will be
the training set. In principle, this can be repeated arbitrarily many times, but
nothing is gained by doing so. Between 5 and 10 trials would be sufficient for
the Iris data set. Using random cross validation, keeping the classes balanced,
and with 10 examples from each class in the test set, and overall success rate
averaged over ten trials, a 93% success rate was obtained. This would be a
little different each time due to the random nature of the experiment.

What might be called the ultimate in cross validation picks a single sample
from the entire set as test data, and uses the rest as training data. This can be
repeated for each of the samples in the set, and the average over all trials gives
the success rate. For the Iris data, there would be 150 trials, each with a single
classification. This is called leave-one-out cross validation, for obvious reasons.

For the Iris set again, leave-one-out cross validation leads to an overall
success rate of 96% when used with a nearest neighbor classifier; it’s probably
the best that can be done. This is a good technique for use with smaller data
sets, but is really too expensive for large ones.

8.4 Support Vector Machines

Section 8.1.3 discussed the concept of a linear discriminant. This is a straight
line that divides the feature values into two groups, one for each class, and is
an effective way to implement a classifier if such a line can be found. In higher
dimensional spaces — that is, if more than two features are involved — this
line becomes a plane or a hyperplane. It’s still linear, just complicated by
dimensionality. Samples that lie on one side of the plane belong to one class,
while those on the other belong to a different class. A support vector machine
(SVM) is a nitro-powered version of such a linear discriminant.

There are a couple of ways in which an SVM differs from simpler linear
classifiers. One is in the fact that an SVM attempts to optimize the line or
plane so that it is the best one that can be used. In the situation illustrated in
Figure 8.10 there are two classes, white and black. Any of the lines shown in
8.10a will work to classify the data, at least the data that is seen there. New
data could change the situation, of course. Because of that it would be good
to select the line that does the best possible job of dividing the plane into the
two areas occupied by the two classes. Such a line is shown in Figure 8.10b.
The heavy dark line is the best line, and the thin lines on each side of it show
the space between the two classes — the heavy line divides this space evenly
into two parts, giving a maximum margin or distance between the groups. The
point of an SVM is to find the maximum margin hyperplane. A line divides
two-dimensional data into two parts; a plane divides three-dimensional data
into two parts; and a hyperplane is a linear function that divides N-dimensional
data into two parts. The maximum margin hyperplane is always as far from
both data sets as possible.

Chapter 8 ■ Classification 307

(a) (b)

Figure 8.10: (a) A collection of straight lines that separate two classes. (b) The best line,
or maximum margin line/plane/ hyperplane. The white area between the classes is the
margin.

Finding a maximum or minimum margin is an optimization problem,
and there are many methods for solving these [Bunch, 1980; Fletcher, 1987;
Kaufman, 1998; Press, 1992], but they are beyond the scope of the present
discussion. It suffices to say that it can be done. The basic idea, though, is to
use feature vectors on the convex hull of the data sets as candidates to be used
to guide the optimization. The candidates are called support vectors and are
illustrated, along with the convex hulls for the data sets, in Figure 8.11. The
support vectors completely define the maximal margin line, which is the line
that passes as far as possible from all three of those vectors. There can be more
than three support vectors, but not fewer.

support vectors

Figure 8.11: The convex hull of the feature vectors for the two classes, and the three
support vectors for the final maximal margin line.

Support vector machines can also find non-linear boundaries between
classes, which is their other major advantage over other methods. This is not

308 Chapter 8 ■ Classification

done by finding curved or piecewise linear paths between the feature vectors
of each class, but in fact is accomplished by transforming those feature vectors
so that a linear boundary can be found. A simple and clear example of this
situation can be seen in Figure 8.12a, where the vectors of one class completely
surround those of the other. It is obvious that there is no line or plane that can
divide these vectors into the two classes.

A transformation of these vectors can yield a separable set. The vectors
shown are in two dimensions; they lie in a plane. If we add a dimension
and transform the points appropriately into a third dimension, a plane can
be found that divides the classes (Figure 8.12b). The data has been projected
into a different, higher dimensional feature space. In SVM parlance, this
transformation uses a kernel, which is the function that projects the data. There
are many possible kernels; Figure 8.12 shows the result of using a Gaussian
(a radial basis function), but polynomials and other functions can be used,
depending on the data.

(a) (b)

Figure 8.12: (a) Feature vectors for two classes that cannot be separated linearly. (b) The
same vectors after being projected into a third dimension using a radial basis function.
The can now be separated using a plane.

So, the points near the origin are given a larger value in the third dimension
than those farther away, pushing the feature vectors near (0, 0) to a greater
height. The maximal margin plane will cut the points in two in this third
dimension, giving a perfect linear classifier.

Incidentally, SVMs can distinguish between only two classes. If there are
more classes, an SVM classifier must approach them pair-wise. This is true of
any classifier that uses linear discriminants.

This has been a fairly high-level description of support vector machines.
It is a complex subject about which volumes have been written; see Burges,

Chapter 8 ■ Classification 309

Vapnick, and Witten for more details. Actual working software can be
found in many places on the Internet, including the WEKA system (www.cs
.waikato.ac.nz/ml/weka/), SVMlight (http://svmlight.joachims.org/), and
LIBSVM (www.csie.ntu.edu.tw/~cjlin/libsvm/), for starters. There are
many links at www.support-vector.net/software.html.

8.5 Multiple Classifiers—Ensembles

In complex situations, where there are many classes and many features, it is
often true that some classifiers work better for some of the classes than others.
One classifier may be able to identify cars in an image, for example, while
another is better at trucks, or perhaps even hatchbacks. It may also be that
some classifiers work better in some kinds of lighting, or in the presence of
specific sorts of noise. In those situations it may be desirable to use more than
one kind of classifier, and to merge the results after classification. These are
referred to as ensemble classifiers.

The key with an ensemble is to find a way to merge the diverse results
from the individual classifiers. They may be of quite different types and have
very different methods, but all have the same basic goal, even if the problem
has been distributed. In the following description, the hand-printed digital
recognition problem of Chapter 9 will be developed. In this problem, an
image is presented to the classifier that contains a single hand-printed digit, 0
through 9, which has been scanned or otherwise converted into image form.
The question: what digit is this?

8.5.1 Merging Multiple Methods
A classifier can produce one of three kinds of output. The simplest and
probably the most common is a basic, unqualified expression of the class
determined for the data object. For a digit-classification scheme, this would
mean that the classifier might simply state, ‘‘This is a SIX,’’ for example; this
will be called a type 1 response [Xu, 1992]. A classifier may also produce a
ranking of the possible classes for a data object. In this case, the classifier
may say, ‘‘This is most likely a FIVE, but could be a THREE, and is even less
likely to be a TWO.’’ Probabilities are not associated with the ranking. This
will be called a type 2 response. Finally, a classifier may give a probability or
other such confidence rating to each of the possible classes. This is the most
specific case of all, since either a ranking or a classification can be produced
from it. In this case, each possible digit would be given a confidence number
that can be normalized to any specific range. This will be called a type 3
response.

310 Chapter 8 ■ Classification

Any reasonable scheme for merging the results from multiple classifiers
must deal with three important issues:

1. The response of the multiple classifier must be the best one given
the results of the individual classifiers. It should in some logical way
represent the most likely true classification, even when presented with
contradictory individual classifications.

2. The classifiers in the system may produce different types of response.
These must be merged into a coherent single response.

3. The multiple classifier must yield the correct result more often than any
of the individual classifiers, or there is no point.

The first problem has various potential solutions for each possible type of
response, and these will be dealt with first.

8.5.2 Merging Type 1 Responses
Given that the output of each classifier is a single, simple classification value,
the obvious way to combine them is by using a voting strategy. A majority
voting scheme can be expressed as follows: let Ci(x) be the result produced by
classifier i for the digit image x, where there are k different classifiers in the
system; then let H(d) be the number of classifiers giving a classification of d for
the digit image x, where d is one of {0,1,2,3,4,5,6,7,8,9}. H can be thought of as
a histogram, and could be calculated in the following manner:

for (i=0; i<k; i++)

H[Ci(x)] += 1;

Then, the overall classification E, expressing the opinions of the k classifiers,
could be:

E(x) =

 j if max(H(i)) = H(j) and H(j) >

k
2

10 otherwise
(EQ 8.8)

This is called a simple majority vote (SMV). For comparison, a parliamentary
majority vote would simply select j so that H(j) was a maximum. An easy
generalization of this scheme replaces the constant k/2 in the above expression
with k*α for 0 <= α <= 1 [Xu, 1992]. This permits a degree of flexibility
in deciding what degree of majority will be sufficient, and will be called a
weighted majority vote (WMV). This scheme can be expressed as:

E(x) =
{

j if max(H(i)) = H(j) and H(j) >αk

10 Otherwise
(EQ 8.9)

For example, many important votes in government and administrative
committees require a 2/3 majority in order to pass. This would be equivalent
to a value of α = 2/3 in Equation 8.9.

Chapter 8 ■ Classification 311

Neither of the preceding two equations takes into account the possibility that
all the dissenting classifiers agree with each other. Consider the following cases.
In case A there are ten classifiers, with six of them supporting a classification
of ‘‘6,’’ one supporting ‘‘5,’’ one supporting ‘‘2,’’ and two classifiers rejecting
the input digit. In case B, using the same ten classifiers, six of them support
the classification ‘‘6,’’ and the other four all agree that it is a ‘‘5.’’ Do cases A
and B both support a classification of ‘‘6,’’ and do they do so equally strongly?

One way to incorporate dissent into the decision is to let max1 be the number
of classifiers that support the majority classification j (max1 = H(j)), and to
let max2 be the number supporting the second most popular classification
h (max2 = H(h)). Then the classification becomes:

E(x) =
{

j if max(H(i)) = H(j) and max1 − max2 >= (αk)
10 Otherwise

(EQ 8.10)

where α is between 0.0 and 1.0. This is called a dissenting-weighted majority vote
(DWMV).

8.5.3 Evaluation
A multiple classifier system involves passing the input image to each classifier,
gathering the results from each, and then using those as a vote on the final
result. This must be done repeatedly for images having a known content, and
the results of the vote compared against the known true value. Each of these
is one trial, and the percentage of the trials that yield a correct answer gives a
key metric of the value of the classifier combination. Some methods are more
difficult to evaluate. For example, WMV requires an assessment of the effect of
the value of α on the results. A way to deal with this is to write a small program
to vary α from 0.05 to 0.95, classifying all sample digits on each iteration.

This evaluation process can be then repeated multiple times, omitting one
of the classifiers each time to test the relative effect of each classifier on the
overall success. If omitting a classifier actually improves the result, then that
classifier should be removed from the collection for that kind of data. This
much data requires a numerical value that can be used to assess the quality
of the results. The recognition rate could be used alone, but this does not take
into account that a rejection is much better than a misclassification; both would
count against the recognition rate. A measure of reliability can be computed as:

Reliability = Recognition
100% − Rejection

(EQ 8.11)

The reliability value will be low when few misclassifications occur. Unfor-
tunately, it will be high if recognition is only 50%, with the other 50% being
rejections. This would not normally be thought of as acceptable performance.
A good classifier will combine high reliability with a high recognition rate; in

312 Chapter 8 ■ Classification

that case, why not simply use the product reliability*recognition as a measure of
performance? In the 50/50 example above, this measure would have the value
0.5: reliability is 100% (1.0) and recognition is 50% (0.5). In a case where the
recognition rate was 50%, with 25% rejections and 25% misclassifications, this
measure will have the value 0.333, indicating that the performance is not as
good. The value reliability*recognition will be called acceptability. The first thing
that should be done is to determine which value of α gives the best results,
which is more accurately done when the data is presented in tabular form or
as a graph of alpha versus acceptability. For example, consider the data in
Table 8.3.

Table 8.3: Acceptability of the Multiple Classifier Using a Weighted Majority Vote

ALPHA ACCEPTABILITY

0.05 0.992

0.25 0.993

0.50 0.978

0.75 0.823

Given that this is a table of results from the multiple classifier using WMV,
it can be concluded that α should be between 0.25 and 0.5, for in this range the
acceptability peaks without causing a drop in recognition rate.

8.5.4 Converting Between Response Types
Before proceeding to analyze methods for merging type 2 responses (ranks),
it would be appropriate to discuss means of converting one response type to
another. In particular, not all the classifiers yield a rank ordering, and this
will be needed before merging the type 2 responses with those of types 1
and 3.

Type 3 to Type 1 — Select the class having the maximum confidence
rating as the response.

Type 3 to Type 2 — Sort the confidence ratings in descending order. The
corresponding classes are in rank order.

Type 2 to Type 1 — Select the class having the highest rank as the type 1
response.

Converting a type 1 response to a type 3 cannot be done in a completely
general and reliable fashion. However, an approximation can be based on
the measured past performance of the particular algorithm. Each row in
the confusion matrix represents the classifications actually encountered for a

Chapter 8 ■ Classification 313

particular digit with that classifier expressed as a probability, and the columns
represent the other classifications possible for a specified classification; this
latter could be used as the confidence rating. The conversions from type 1 can
be expressed as:

Type 1 to Type 3 — Compute the confusion matrix K for the classifier. If
the classification in this case is j, then first compute:

S =
9∑

i = 0

K(i, j) (EQ 8.12)

Now compute the type 3 response as a vector V, where

V(i) = K(i, j)
S

(EQ 8.13)

Type 1 to Type 2 — Convert from type 1 to type 3 as above, and then
convert to type 2 from type 3.

8.5.5 Merging Type 2 Responses
The problem encountered when attempting to merge type 2 responses is as
follows: given M rankings, each having N choices, which choice has the largest
degree of support? For example, consider the following 3-voter/4-choice
problem [Straffin, 1980]:

Voter 1: a b c d Voter 2: c a b d Voter 3: b d c a

This case has no majority winner; a, b and c each get one first place vote.
Intuitively, it seems reasonable to use the second place votes in this case to see
if the situation resolves itself. In this case, b receives two second place votes
to a’s one, which would tend to support b as the overall choice. In the general
case, there are a number of techniques for merging rank-ordered votes, four
of which will be discussed here.

The Borda count [Borda, 1781; Black, 1958] is a well-known scheme for
resolving this kind of situation. Each alternative is given a number of points,
depending on where in the ranking it has been placed. A selection is given
no points for placing last, one point for placing next to last, and so on,
up to N−1 points for placing first. In other words, the number of points
given to a selection is the number of classes below it in the ranking. For the
3-voter/4-choice problem, the situation is:

Voter 1: a (3) b (2) c (1) d (0)

Voter 2: c (3) a (2) b (1) d (0)

Voter 3: b (3) d (2) c (1) a (0)

314 Chapter 8 ■ Classification

where the points received by each selection appears in parentheses behind the
choice. The overall winner is the choice receiving the largest total number of
points:

a = 3 + 2 + 0 = 5

b = 2 + 1 + 3 = 6

c = 1 + 3 + 1 = 5

d = 0 + 0 + 2 = 2

This gives choice b as the ‘‘Borda winner.’’ However, the Borda count does
have a problem that might be considered serious. Consider the following
5-voter/3-choice problem:

Voter 1: a b c Voter 2: a b c Voter 3: a b c

Voter 4: b c a Voter 5: b c a

The Borda counts are a = 6, b = 7, c = 2, which selects b as the winner.
However, a simple majority of the first place votes would have selected a! This
violates the so-called majority criterion [Straffin, 1980]:

If a majority of voters have an alternative X as their first choice, a voting rule should
choose X.

This is a weaker version of the Condorcet winner criterion [Condorcet, 1785]:
If there is an alternative X which could obtain a majority of votes in pair-wise

contests against every other alternative, a voting rule should choose X as the winner.
This problem may have to be taken into account when assessing performance

of the methods.
A procedure suggested by Thomas Hare [Straffin, 1980] falls into the category

of an elimination process. The idea is to repeatedly eliminate undesirable choices
until a clear majority supports one of the remaining choices. Hare’s method
is as follows: If a majority of the voters rank choice X in first place, then
X is the winner; otherwise, the choice with the smallest number of first place
votes is removed from consideration, and the first place votes are re-counted.
This elimination process continues until a clear majority supports one of the
choices.

The Hare procedure satisfies the majority criterion but fails the Condorcet
winner criterion, as well as the monotonicity criterion:

If X is a winner under a voting rule, and one or more voters change their preferences
in a way favorable to X without changing the order in which they prefer any other
alternative, then X should still be the winner.

No rule that violates the monotonicity criterion will be considered as
an option for the multiple classifier. This decision will eliminate the Hare
procedure, but not the Borda count. With the monotonicity criterion in mind,
two relatively simple rank merging strategies become interesting. The first is
by Black [Black, 1958], and chooses the winner by the Condorcet criterion if

Chapter 8 ■ Classification 315

such a winner exists; if not, the Borda winner is chosen. This is appealing in its
simplicity, and can be shown to be monotonic. Another strategy is the so-called
Copeland rule [Straffin, 1980]: for each option compute the number of pair-wise
wins of that option with all other options, and subtract from that the number
of pair-wise losses. The overall winner is the class for which this difference is
the greatest. In theory this rule is superior to the others discussed so far, but
it has a drawback in that it tends to produce a relatively large number of tie
votes in general.

8.5.6 Merging Type 3 Responses
The classifier systems discussed so far have no single classifier that gives
a proper type 3 response. Because of this, the problem of merging type 3
responses was not pursued with as much vigor as were the type 1 and 2
problems. Indeed, the solution may be quite simple. Suen [Xu, 1992] decides
that any set of type 3 classifiers can be combined using an averaging technique.
That is,

PE(x ∈ Ci|x) = 1
k

k∑
j = 1

Pj(x ∈ Ci|x), i = 1, . . . , M (EQ 8.14)

where PE is the probability associated with a given classification for the multiple
classifier, and Pk is the probability associated with a given classification for
each individual classifier k. The overall classification is the value j, for which

PE(x ∈ Cj|x) (EQ 8.15)

is a maximum.

8.6 Bagging and Boosting

The methods referred to in the literature as bagging and boosting are
re-sampling and weighting schemes designed to improve the overall success
rate of a classifier.

8.6.1 Bagging
Bagging (or bootstrap aggregation) involves creating multiple training sets from
the overall set of training data. Each set is drawn at random from the base set,
with replacement. This means that the same training item could appear more
than once in a particular training set. Each set has the same size, N, and there
are T sets. A classifier is trained using each of the T data sets (sometimes called
bootstrap samples), meaning that the classifier is trained using bootstrap sample

316 Chapter 8 ■ Classification

1 and the result is called classifier 1; then the classifier is trained again using
bootstrap sample 2, and this is called classifier 2; and so on for all T samples,
yielding T classifiers. These T classifiers are then combined using a majority
vote to give a single classification that is based on many similar but differently
trained classifiers.

A popular claim, due to Breiman [1996], is that bagging works best on
‘‘unstable’’ learning algorithms. In these cases, a small change in the training
set can create a large change in classifications. Such unstable algorithms include
neural networks and decision trees.

8.6.2 Boosting

The idea behind bagging is fundamentally the technique called boosting. In this
technique, classifiers are trained on a sequence of training data sets. Unlike
in bagging, however, the training sets are selected with a purpose. Samples
that have failed to be classified by previous iterations of the process become
increasingly likely to be used in training sets. Thus, the current iteration of
boosting is an attempt to explicitly create a classifier, for example, where the
previous failed to succeed. Another, early, name for boosting was arcing, from
the descriptive phrase adaptively resample and combine.

The method begins at iteration 1. The training set will contain N items
from a set of M in total, and these are selected at random. That means
that the probability of any item being used in the training set is 1/N. The
classifier is then trained on these data and tested. At this point, a set of
probabilities is calculated for each data item based on whether it was classified
successfully. Training set items remain at 1/N, whereas items that failed to
be classified have their probability increase. Then a second set of training
items is chosen, one in which the failed items from the previous trial are
more likely to be included. Selection is done with replacement, so the same
hard to classify items could be used in the same set many times. The process
creates a set of classifiers, each one more likely to succeed on the difficult
items. All classifiers are used in an ensemble system, and the overall success
rate should be higher than any one classifier. A boosting scheme usually
has a weighted voting scheme, where each classifier’s vote has a different
value. Bagging considers the votes of each classifier as being worth the same
amount.

After classifying all items in iteration t, an error is computed as:

et =
∑

All misclassified items i

wti∑
i

wti
(EQ 8.16)

Chapter 8 ■ Classification 317

These error values will be used to update the weights for the next iteration.
First, a scale factor is determined. One example is:

at = 1
2

log
(

(1 − et)
et

)
(EQ 8.17)

Then the weights are updated according to the following scheme:

wt+1
i = wt−at

i e if i represented a correct classification
wt+1

i = wtat
i e if i represented a incorrect classification

(EQ 8.18)

The weights are then normalized so that they sum to 1.0 (divide each one by
the sum of them all).

There are many kinds of boosting algorithms listed in the literature. Most
differ in the way that the probabilities are computed for selecting data for
the next iteration, and in the way that the classifier votes are weighted in the
ensemble. The result is a linear combination of the classifier sequence:

f (x) =
T∑

t = 1

wtCt(x) (EQ 8.19)

where the wt are weights and the Ct are the classifiers.
Adaboost (Adaptive boosting) [Freund, 1995] was an early development and

remains a popular choice today. (It uses the scale factor of Equation 8.17, by the
way.) C++ code can be found on the Web (e.g., www.di.unipi.it/%7Egulli/
coding/adaboost.tgz). LPBoost is a scheme that uses linear programming to
maximize the margin between training sets [Demiriz, 2002].

8.7 Website Files
nn.c C program to compute the nearest neighbor classification of

the Iris data

nkn.c k-nearest neighbor classifier for Iris data

nc.c Nearest centroid classifier

reg1.c Region marking program for tomato/carrot image

cross5.c 5-way cross validation for Iris data

loo.c Leave-one-out cross validation

iris-train1.txt Training data, Iris setosa

iris-train2.txt Training data, Iris versicolor

318 Chapter 8 ■ Classification

iris-train3.txt Training data, Iris virginica

iris-test1.txt Test data, Iris setosa

iris-test2.txt Test data, Iris versicolor

iris-test3.txt Test data, Iris setosa

iris-data.txt Complete Iris data set

8.8 References

Anderson, E. ‘‘The Irises of the Gaspé Peninsula.’’ Bulletin of the American
Iris Society 59 (1935): 2–5.

Black, D. The Theory of Committees and Elections, Cambridge: Cambridge Uni-
versity Press, 1958.

Borda, Jean-Charles de. ‘‘Mémoire sur les Elections au Scrutin,’’ Histoire de
l’Académie Royale des Sciences. Paris, 1781.

Breiman, L., ‘‘Bagging Predictors.’’ Machine Learning 24, no. 2 (1996): 123–140.
Brams, S. J., and P. C. Fishburn. Approval Voting, Boston: Birkhauser, 1983.
Bunch, J. R., and L. Kaufman. ‘‘A Computational Method for the Indefinite

Quadratic Programming Problem.’’ Linear Algebra and its Applications 34
(1980): 341–370.

Burges, C. J. C. ‘‘A Tutorial on Support Vector Machines for Pattern Recogni-
tion,’’ Data Mining and Knowledge Discovery 2 (1998): 121–167.

Condorcet, Marquis de. Essai sur l’application de l’analyse à la probabilité des
décisions rendues à la pluralité des voix. Paris, 1785.

Demiriz, A., K. P. Bennett, and J. Shawe-Taylor. ‘‘Linear Programming Boosting
via Column Generation.’’ Kluwer Machine Learning 46 (2002): 225–254.

Devijver, P. A., and J. Kittler, Pattern Recognition: A Statistical Approach. London:
Prentice-Hall, 1982.

Duda, R. O., P. E. Hart, and D. H. Stork. Pattern Classification (2nd ed.). Wiley
Interscience, 2000.

Enelow, J. M., and M. J. Hinich. The Spatial Theory of Voting: An Introduction.
Cambridge: Cambridge University Press, 1984.

Farquharson, R. Theory of Voting, New Haven: Yale University Press, 1969.
Fisher, R. A. ‘‘The Use of Multiple Measurements in Taxonomic Problems.’’

Annals of Eugenics 7 (1936): 179– 188. http://digital.library.adelaide
.edu.au/coll/special//fisher/138.pdf.

Fletcher, R. Practical Methods of Optimization. 2nd. ed. John Wiley and Sons,
Inc., 1987.

Freund, Y., and R. E. Schapire. ‘‘A Short Introduction to Boosting.’’ Journal of
Japanese Society for Artificial Intelligence 14, no. 5 (September, 1999):771–780.

Chapter 8 ■ Classification 319

Freund, Y. ‘‘Boosting a weak learning Algorithm by Majority.’’ Information and
Computation 121, no. 2 (1995): 256–285.

Freund, Y. ‘‘An Adaptive Version of the Boost by Majority Algorithm.’’
Proceedings of the Twelfth Annual Conference on Computational Learning Theory,
1999.

Ho, T. K., J. J. Hull, and S. N. Srihari. ‘‘Decision Combination in Multiple Clas-
sifier Systems.’’ IEEE Transactions on Pattern Analysis and Machine Intelligence
16, no. 1 (January 1994).

Kaufman, L. ‘‘Solving the Quadratic Programming Problem Arising in Support
Vector Classification.’’ In Advances in Kernel Methods: Support Vector Learning,
edited by Bernhard Schölkopf, Chrisopher J. C. Burges, and Alexander J.
Smola. Cambridge, MA: MIT Press, 1998.

McLachlan, G. J. Discriminant Analysis and Statistical Pattern Recognition. Wiley
Interscience, 2004.

Parker, J. R. Practical Computer Vision Using C. New York: John Wiley & Sons,
Inc., 1994.

Picard, Richard, Dennis Cook. ‘‘Cross-Validation of Regression Models.’’
Journal of the American Statistical Association 79, no. 387 (1984): 575–583.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vettering. Numerical
Recipes in C: The Art of Scientific Computing. 2nd ed. Cambridge: Cambridge
University Press, 1992.

Shawe-Taylor, J., and N. Cristianini. An Introduction to Support Vector Machines
and Other Kernel-based Learning Methods. Cambridge: Cambridge University
Press, 2000.

Straffin, P. D., Jr. Topics in the Theory of Voting. Boston: Birkhauser, 1980.
Vapnik, V. The Nature of Statistical Learning Theory. Springer, 1995.
Witten, I. H., and E. Frank. Data Mining: Practical Machine Learning Tools

and Techniques with Java Implementations. San Francisco: Morgan Kaufmann,
2000.

Xu, L., A. Krzyzak, and C. Y. Suen. ‘‘Methods of Combining Multiple Classifiers
and Their Application to Handwriting Recognition.’’ IEEE Transactions on
Systems, Man, and Cybernetics 22, no. 3.

C H A P T E R

9

Symbol Recognition

9.1 The Problem

Reading is such a fundamental part of daily life that few of us give much
thought to how it is accomplished, unless we are actively involved in either
learning to read or teaching someone else how to read. The first step in
teaching reading is often the teaching of the alphabet. The ability to recognize
letters and digits (characters) is fundamental to intepreting printed language;
however, for a computer, a character on a page is merely another image or
object to be recognized. Much of the power of the techniques that have been
discussed to this point needs to be brought to bear on the apparently simple
problem of recognizing the letter a.

It is not known how humans recognize visual objects with so little effort.
Even if it were, there is no compelling reason to think that the same method
could be used on a computer; the human brain and a computer are not all
that similar at a detailed level. The problem of optical character recognition
(OCR), which is the problem of the automatic recognition of raster images as
being letters, digits, or some other symbol, must be approached like any other
problem in computer vision.

The problem is useful and interesting because of how much information is
stored in printed form. A visit to the local library is enough to convince anyone
of the utility of a computer system that can visually process the printed word.
In addition, characters appears in almost any real-world scene, printed on
billboards, license plates, menus, signs, and even tattooed on flesh. Maps and
charts (even in digital form) frequently contain raster versions of place names

321

322 Chapter 9 ■ Symbol Recognition

and directions. Even the ubiquitous fax machine transmits its data as an image;
most computers that can receive a fax cannot convert it into an ASCII text file,
but instead store it as a (much larger) binary image.

An optical character recognition system must do a number of things, and do
them with a high degree of precision. Let’s assume that the input to the system
is an image of a page of text. The first thing to do is to confirm the orientation
of the text on the page; sometimes a page is not quite square to the scanning
device. The image must then be segmented, first into black and white pixels,
then into lines of text, and finally into individual glyphs, which are images of
individual symbols. A recognition strategy is then applied to each glyph. If
the symbol is one that the system has been trained to recognize, then there
is a measured probability of a correct recognition, and usually a nonzero
probability of a wrong answer. The recognized characters are collected into
words and sentences, and must be output in the correct order.

A good spelling checker is useful here. Most people read words rather than
individual letters, and the additional information provided by context can be
useful. For a simple example, consider the word Because. The uppercase letter
B is often confused with the digit 8 by character recognition systems, and for
an obvious reason. If this occurred, the result would be 8ecause, and a spelling
checker would immediately discard this as a possibility — a good one would
even fix it! Otherwise, the letters would be replaced, one after the other and
starting with the most likely error, with the most probable mistakes. Sooner or
later, the 8 would be replaced by a B, and the word would be complete.

There are other problems to be solved, especially in mixed documents
containing both graphics and text. What parts of the page correspond to
graphics? Should the graphics areas be examined to see if they contain text,
also? What about different sizes and styles of text (italics, bold, various fonts)?
And, in particular, handprinted characters are a nightmare; no two of them
are exactly alike, even when printed carefully by the same writer.

These problems will be dealt with one at a time, and in isolation from
one another. The goal is to produce a working OCR system that can be used
to extract the text from a fax received by a PC, but other issues such as
handprinted characters will be examined as well.

9.2 OCR on Simple Perfect Images

The basic recognition problem will be addressed first, followed by a discussion
of the outlying problems. Consider that a bilevel image of a page of text exists:
The problem is to recognize the characters (and therefore the words) on the
page, and create a text file from them. Except in special circumstances (such
as pages containing mathematics or multiple languages) there would be no
more than 128 different characters that need to be identified. Since a computer

Chapter 9 ■ Symbol Recognition 323

is a rather fast machine, it is possible to check an incoming glyph against all
possible characters, and classify the input as the best match.

In order to do this the program must be trained to recognize all the possible
characters. This may be a simple matter of providing templates for each one, or
a complex issue involving the processing of thousands of known documents,
depending on the method used. A standard text image is useful at this stage,
one that contains all the characters to be recognized in a known order. In this
way the program can train itself; the first character on the text image is known,
and the example on the page is measured by the program and used as an
example of its class.

Figure 9.1 shows the training image that will be used by the system being
devised. All the typical characters found on a North American keyboard are
present twice. The use of variations in spacing is intended to at least partially
account for variations in sampling. A letter that occurs one centimeter from the
left margin may have a different appearance as a raster glyph from the same
letter that occurs 1.5 centimeters from the margin, depending on the actual
size of a pixel.

Figure 9.1: Example text image, used to teach the OCR system the basic character set. All
the usual characters on a North American keyboard are present in various positions.

Since the orientation is perfectly horizontal, the first step is to determine
the position and extent of the lines of text in the image. This can be done by
constructing a horizontal projection and searching it for minima. The projection
is simply the sum of the pixel values in a specified direction, so a horizontal
projection is the sum of the pixels in each row. The row of pixels that begins
a new line will be one in which some of the pixels are black, and the last row
belonging to that line will be the last one having any black pixels. The start
and end columns for the line are found by searching the rows that belong to
that line, from column zero through to the first column having a set pixel. The
same is done, but in the reverse direction, to find the last set pixel in a line.

When this has been done, the bounding box for the text lines is known.
Individual characters can be found beginning at the leftmost column belonging
to the uppermost line. Starting at the first column containing a black pixel,
copy pixels from the image into a temporary glyph image until a column

324 Chapter 9 ■ Symbol Recognition

having no black pixels is seen; the range for the rows is the row range for
the entire line, as found previously (the row extents of the bounding box).
Now, the eight lines of text are known initially, since the program will be run
using the test image as input data. This means that each character read from
the image has a known classification. The width, height, and spacing of these
characters can be measured and saved in a database for this particular font,
along with the sample of the glyph that was extracted from the image.

The database thus obtained has a very simple structure, as shown in
Figure 9.2. The entire collection of information is stored as an array having 256
elements, and which is indexed by the ASCII code for the character involved.
Each entry in this array is a list of templates in which the actual size of the
glyph (as well as the pixels themselves) can be found. The list contains multiple
entries that can be used to store variations on the extracted glyphs, including
different sizes and styles of the same character, if needed. The database can be
saved in a file and used when needed. New fonts and styles can be learned
and added to the database; as it grows, the recognition system that uses it
becomes able to recognize a wider variety of characters.

(a) (b)

7 × 9 pixels ‘A’

A

7 × 9 pixels ‘Z’

.

.

.

.

Z

Figure 9.2: (a) The lines found in the training image (Figure 9.1). (b) The structure of
the database in which the glyph information is stored. Everything needed for template
matching is available in the initial version seen here.

The program named learn.c will examine a sample image and create a new
database. The sample image must be that of Figure 9.1, and the database file
created is specified as an argument. For example,

learn testpage.pbm helv.db

Chapter 9 ■ Symbol Recognition 325

was used to create the small database for the Helvetica-like font; this database
can be found on the website. The image testpage.pbm was obtained from a
screen capture.

In this form, the database can be used for the simplest form of character
recognition: template matching. In this case, template matching amounts to
performing a pixel-by-pixel comparison between the saved glyphs and the
input glyphs. The saved ones are classified, so a perfect match implies that the
class of the input glyph is the same as that of the saved one.

Consider the input image seen in Figure 9.3. The database contains saved
templates for each character, and each of these is compared against the input
glyph. Figure 9.3b, for example, is a comparison of the input against the
character A. Note that the black pixels that the two glyphs have in common
are counted in favor of the match, and differences count against. White pixels
do not count; if they did, it would introduce a bias in favor of large characters
having few black pixels.

(a) (b) (c)

Figure 9.3: Template matching. (a) Third input glyph, extracted from an image containing
text. The question is: ‘‘What character is this?’’ (b) The letter A as it appears in the
database. The pixels in common with the input character appear below, in black.
Pixels that do not match are grey. There are eight pixels in the match. (c) The digit 8
as it appears in the database, and the match with the input. The match is better in this case.

The simplest possible OCR system uses this scheme to recognize characters.
The program ocr1.c assumes that the image is bilevel, aligned properly, and
that the database created by learn exists and is correct. It determines the
positions of the lines by using projections, extracts characters from each line

326 Chapter 9 ■ Symbol Recognition

one at a time, and performs a template match against all the characters in the
database. The best match corresponds to the correct classification.

The existence of spaces (blanks) is inferred from the character spacing. Any
character having a distance greater than the mean plus the width of a space as
measured from the training image is assumed to be followed by a space;
multiple spaces are found in the same way. The learn.c program determined
the size of a space by examining the differences in where the various lines
began. For example, the second line is indented an extra space relative to the
first line; this difference is measured as pixel widths, and averaged over the
four instances of indented lines.

When the ocr1.c program is run there are a few problems, none terribly
serious. The actual position of the glyphs relative to one another is not saved
in the database, which means that commas are recognized as single quotes;
they are identical except for position. This could easily be repaired by simply
noting that commas must appear at the bottom of the line, whereas quotes are
at the top. Another problem occurs with double quotes, which are the only
character having two horizontally separated black regions. They would be
extracted as a pair of single quotes, which could be converted into a double
quote with a post-processing stage.

When run using a text image that was captured from the screen of a
small workstation sample.pbm, the ocr1.c program successfully recognized
all characters in the sample except for the commas. Of course, the font was the
same one on which it was trained.

9.3 OCR on Scanned Images—Segmentation

When using a scanner as a text input device, the problem becomes much
more difficult. Most scanners will produce a grey-level image, so thresholding
becomes an issue. The resolution of the scanner is finite, so the position of
the document when scanned will affect the pixel values over the entire image.
This means that a letter will have slightly different pixel values depending on
its horizontal and vertical position on the page, and so will have a number of
possible templates after thresholding.

The orientation of the image is no longer assured, either. Although it should
be close, the page need not be aligned exactly to the horizontal; the ocr1.c

program assumed a perfect alignment. Finally, and most difficult of all, the
characters in the text image may touch each other after thresholding. Two or
three characters that are connected by black pixels, such as those in Figure 9.4,
will be extracted as a single glyph. The problem is serious, because not only is
it not known where to split this glyph to get the three characters, but it may
not even by clear that the glyph contains more than one character. Because of
the use of the proportional fonts in many documents, in which the spacing

Chapter 9 ■ Symbol Recognition 327

between characters is a function of the character, the width of a multiple glyph
does not always exceed that of a single one. For example, the characters ij
occupy less horizontal space than does the single character M.

Figure 9.4: Glyphs extracted from text that uses proportional spacing, and where the
characters are too close together to be easily separated. The fact that the characters are
connected by black pixels leads to the problem of selecting a location at which to split them.

Finally, the use of a scanner introduces noise to the image. When thresholded,
grey-level noise becomes random black pixels, or small black regions. All these
issues combine to greatly increase the complexity of the situation.

Let’s deal with these problems one at a time. The thresholding issue was
dealt with in Chapter 3, and almost any of the methods described there should
work reasonably well on a text image. The adaptive algorithm, found in the
Chapter 4 program thrdd.c is, in addition to being acceptable, fairly quick,
and will be used in the examples that follow. Therefore, the first problem to
be dealt with should be that of noise reduction.

9.3.1 Noise
If noise is a problem, there are a few ways in which it might be dealt with if it is
to be done before thresholding. The first step is to acquire multiple images of
the same page. Averaging the grey levels of each pixel across all the samples
will give a much better image as far as noise is concerned. Averaging four
samples, for example, cuts the noise in half. Of course, this takes longer, and
care must be taken not to move the document at all between scans. Another
possibility is to acquire multiple samples of the page, threshold them, and use
only those pixels that are black in all samples (or a majority vote). This takes
even longer.

If it is not possible to acquire multiple samples, then a median filter will
reduce the noise level. It will, unfortunately, also reduce the contrast of the
edges, and might result in the closing of small gaps. A median filter is a pass
through all pixels in the image, looking at an N×M region centered at each
pixel. The pixel in the center is replaced by the median value of all the pixels in
the region. Not all the pixels must be considered when computing the median;
for example, if only a horizontal row of pixels is used, then vertical edges are
preserved.

The median filter is slow, requiring not only a pass through the image of the
window, but also needing a sort of the pixels values in that window to find

328 Chapter 9 ■ Symbol Recognition

the median; in a sorted array of 100 elements, the median is found at array
element 50. While the mean is easier to calculate, the blurring introduced by
replacing a pixel with the mean of its neighbors is generally more than can be
tolerated [Huang, 1979].

If the noise is to be removed after thresholding, then the problem becomes
one of filling small holes in the characters and removing small isolated black
regions. Specific noise reduction filters have been designed for use in OCR
systems that take advantage of existing knowledge about the characteristics of
text images. Some of these are small (3×3) templates that are passed over the
image, deleting or setting a pixel whenever a match is encountered.

For larger regions morphology has been used, but a relatively recent method
called the kFill filter [O’Gorman, 1992] is very interesting. This method uses
a square k×k pixel window passed over the image multiple times. The outer
two rows and columns of the window are called the neighborhood, with the
center portion called the core. The first pass of the window will set all the core
pixels to white (the background level) if certain parameters computed from
the neighborhood allow this; the second pass will set the core pixels to black,
again depending on the neighborhood.

For the sake of explanation, assume that k = 5. Since the neighborhood
consists of the outside two rows and columns, this means that the core is just
the single pixel in the middle of the window. On the first of the two passes of
the 5×5 window over the image, we are looking for locations where the core
is black. At any such locations, the following values are measured:

1. The total number of white (background) pixels in the neighborhood. This
value is n.

2. The number of white corner pixels. This value is r.

3. The number of distinct connected white regions encountered in the
neighborhood. This value is c.

If c has any value except 1, this window is left alone and the next one is
processed. The reason is that the core pixels may connect two regions, and
deleting the core pixels will create two objects where one existed before.

Assuming that c = 1, the core pixels are set to white if:(
n > 3k − k

3

)
∨
((

n = 3k − k
3

)
∧ (r = 2)

)
(EQ 9.1)

Figure 9.5a shows a glyph containing salt-and-pepper noise resulting from
thresholding a noisy image. After the first pass, the isolated black pixels are
gone (Figure 9.5b), as are some of the boundary pixels. After the next pass
the isolated white pixels are gone, too (Figure 9.5c), and processing could
stop here. However, the algorithm continues until no changes occur in two

Chapter 9 ■ Symbol Recognition 329

consecutive passes, and there remain a few boundary pixels that satisfy the
removal criterion. The final glyph appears in Figure 9.5d.

(a) (b) (c) (d)

Figure 9.5: Use of the kFill noise-reduction algorithm. (a) Original noisy glyph. (b) After
the first pass with k=5; the isolated black pixels are removed. (c) After the second pass,
which removes isolated white regions. (d) Processing continues until no further changes
are seen in two consecutive passes.

The program kfill.c provides a sample implementation of this technique.

9.3.2 Isolating Individual Glyphs
The connected glyphs in Figure 9.4 illustrate a part of the problem that occurs
when multiple glyphs connect to each other, due to noise or undersampling.
The problem is quite serious, because a template match will give very poor
results in these cases, and a statistical approach (Section 8.1.1) requires iso-
lated glyphs from which to measure features. Ultimately, separating these
connected glyphs is essential if a reasonable recognition rate is to be achieved,
but there are many ways in which the connections can be formed, and some
valid glyphs can appear to be two connected ones. An example of the latter
case is the letter m, which can be split into two good matches of r and n.
It might well be that a good separation cannot be done as an isolated case,
and that contextual information will be necessary for a proper segmentation.
Continuing the example, if the letter m appears at the end of the word farm,
then the separation into rn would yield the word farrn, which would not make
sense.

It would be only fair to point out that this is an unsolved problem. There
is no algorithm that works in all the cases that might be encountered while
scanning any document of a reasonably large size. Still, something must
be done, and the most commonly encountered methods use some variation
of a vertical projection. Most simple of all is to locate the minima in the
vertical projection and segment the image at those places, but this has some
unfortunate problems.

Consider the small text image in Figure 9.6. Many of these characters
have clear separations, and would be isolated by the process of identifying

330 Chapter 9 ■ Symbol Recognition

connected components. The vertical profile (projection) appears below as a
line graph, and solid vertical lines spanning the two shows the positions where
the characters should be split. The dashed vertical lines show places where a
projection-based method would split a character into two parts, creating an
error. These locations occur in places where the projection is a local minimum
having a smaller value than the minimum between the t and h in the word the.
Thus, any reasonable threshold value used to identify minima would either
fail to split the th in the, or would also split the n and the h into two parts.

Figure 9.6: Using minima in the profile results in splitting some legitimate glyphs into
two parts. Splitting the n, for example, could result in seeing ri instead.

A related technique computes a break cost, which uses two adjacent columns
[Tsujimoto, 1991]. This value is defined as the number of black pixels in a
column that also have a black neighbor in the same row of the previous
columns, as shown in Figure 9.7. Columns in which the break cost is small are
candidates for locations at which to split the glyph. The break cost is plotted in
Figure 9.7 below the text image and, as before, solid lines are drawn where the
segmentation into glyphs would occur — in this case, places where the break
cost is zero.

Although the segmentation of the image in the figure is perfect, this is not
always the case. The addition or removal of one strategic pixel could alter the
situation; for instance, if the t in the were connected at the bottom by one more
pixel, then the t and the h would not be split.

Chapter 9 ■ Symbol Recognition 331

Figure 9.7: The use of break cost for locating isolated characters. The vertical lines are
drawn where the break cost is zero. This happens to segment the image perfectly, which
is not true in general.

Applied alone, none of the glyph segmentation methods will successfully
isolate a large fraction of the connected glyphs. The problem might be fun-
damentally ambiguous, and so the solution is to use other information. The
use of context is possible, as is the optimization of the recognition probabil-
ities for the entire collection of connected components. This latter idea can
be implemented at a relatively low level, and so is generally tried first. The
use of context generally means checking words to make sure they exist in a
dictionary, and correcting the spelling accordingly. This can only be done after
the entire set of component glyphs have been extracted and recognized.

A typical approach would work as follows: The connected glyph image
would have cut locations identified by one of the previously discussed meth-
ods. The pixels between each two cut positions would then be considered to
be a glyph, and recognition would be attempted. The set of cut positions for
which all glyphs were recognized (and having the highest probability of being
correct) would be chosen as the correct segmentation.

Consider the image in Figure 9.8. This consists of five character glyphs,
all of which are connected as a single connected region. The cut positions as
determined by break costs are shown in the figure as arrows pointing to the
position at which to cut; there are six of them, any of which (or any consecutive
combination of which) might be an actual character. A possible next step in
the segmentation process is to create a decision tree containing the possible
groupings of the regions in the image. Each contiguous region corresponds

332 Chapter 9 ■ Symbol Recognition

to a node in the tree, as shown in Figure 9.8b. Also associated with each
node is a character (which is the classification of the region) and a measure of
likelihood. The most likely path through the tree will be selected as the correct
segmentation, and the classifications will therefore be immediately available.

C1 C2 C3 C4 C5

(a)

(b)

* *

*...

*

* *

Root

1‘t’
.87

‘l’
.31

‘i’
.9

‘s’
.92

‘h’
.81

‘m’
.11

12 123 1234

2 23 234

... 4

5

45

2345

12345

Figure 9.8: A connected glyph and its decision tree. (a) Each of the five regions may
themselves be a glyph, or any set of adjacent regions may combine to form a glyph.
(b) The decision tree. At the first stage, the first region is determined to be a t. The second
character could be any of l, h, or m, with only the path corresponding to this giving a
reasonable classification.

When a node (a set of contiguous regions) is able to be accepted (classified
with a significant likelihood) the classification and likelihood are stored in the

Chapter 9 ■ Symbol Recognition 333

relevant node. Only then are the child nodes processed; the children are the
possible combinations of the remaining nodes (regions). Nodes that give a
very poor classification are not evaluated further, at least initially. If it happens
that none of the paths through the tree result in a good classification, then the
less likely branches can be evaluated.

The tree can be constructed as described, or a recursive decomposition can
be devised. The set of all possible recursive calls forms a tree, and the best
segmentation will be the only one retained, the others being discarded as soon
as a better one is found.

This approach depends for its accuracy on the character recognition method
that is applied to the cut regions, but is independent of that algorithm in the
sense that any recognition method will result in a segmentation.

9.3.3 Matching Templates

In general, template matching does not work as well on scanned glyphs as
it did on the perfect images of the previous section. Noise and the resulting
errors caused by thresholding creep into the picture, causing deviations to be
registered when matching characters against even correct templates. Taking
noise reduction seriously does help, and using a good thresholding algorithm
helps, too. Possibly more important is to use a wide selection of templates,
though. The standard image used for teaching a font (Figure 9.1) has only
two instances of each character, when in fact a dozen may not be too many.
Variations can be obtained by scanning the template image many times, saving
each set of templates in the same database. More templates can be had by
using variations on the thresholds, again saving all the variants.

There are also variations possible in the template-matching procedure. When
dealing with perfect glyphs, the number of mismatches was subtracted from
the number of matches. It is better to normalize the match measure to account
for the number of pixels involved. For example, a normalized match index
(NMI) can be found by counting the number of pixels that match (M+) and
those that do not (M−). The normalized match index is then:

NMI = M+ − M−

M+ + M− (EQ 9.2)

This value has a minimum of −1 and a maximum of 1, which is convenient
for many reasons.

Small variations in the glyphs will produce glyphs of slightly varying sizes.
This has the effect of causing a misalignment of the template and the glyph,
which can produce a poor match. Therefore it is necessary to find a number
of possible matches, each corresponding to a different position of the template
over the glyph. A few pixels (perhaps five or six in each dimension) are all that

334 Chapter 9 ■ Symbol Recognition

is needed, but this means between 25 and 36 matching attempts. This slows
down the template-matching process dramatically.

Another issue is that of holes. The background pixels that match are not
counted, as a general rule, since that would give a strong bias towards matching
a large, empty glyph. However, a hole can be considered to be structural. The
large set of background pixels in the center of, for instance, a letter O, can be
used to match the character.

To do this, the holes are marked with a pixel value other than those used for
background and object pixels. Then an extra case is inserted into the function
that computes the match: A hole pixel in the template should match a hole
pixel in a glyph, and (if so) record a match; else record a mismatch. In essence,
hole pixels are treated in the same way as object pixels, but are a distinct class
and don’t match an object pixel.

Given an isolated glyph, the holes can be found in the following way: Any
background pixel connected to the bounding box of the glyph is marked
with, for example, the value 3. Then any background pixel connected to a
3-valued pixel is also marked with a 3, recursively. When no further pixels are
marked or markable, any remaining background pixels within the bounding
box belong to a hole. These are then marked, while the 3-valued pixels revert
to the background level. The use of 4-connected pixels in the marking process
ensures that a thin line will not be ‘‘jumped over,’’ resulting in a hole being
missed.

This is the template-matching process used by the program ocr2.c and the
corresponding learning module, learn2.c. The learn2.c module reads
the standard test image and creates a database of templates. ocr2.c reads the
database, and then attempts to recognize the characters in an input image by
using a template match. The input images correspond to scanned documents.
For example, the image file paged.pbm is an image of printed 10-point text,
scanned at 300 DPI (dots per inch). Of course, the test image must also be
10-point text in the same font, and must have been scanned at the same rate;
the corresponding test image is pagec.pbm. These images have already been
thresholded.

A sample result from ocr2.c appears in Figure 9.9. The data used was
scanned from a page in this book, and appears in the figure above the text
that was extracted, the spaces having been edited. Most of the errors occurred
because of a failure to separated joined glyphs, and because the letter l was
repeatedly mistaken for the special character |.

The errors in the first two lines of output and their causes are as follows:

1. m should have been ta. Caused by the t being joined to the a.

2. | should have been l. Template matching error.

3. m should have been ta. Joined glyphs, again.

Chapter 9 ■ Symbol Recognition 335

4. | should have been l.

5. h should have been fi. Joined glyphs.

6. Missing o. Joined glyphs

7. ! should have been th. Joined glyphs.

8. | should have been l.

Figure 9.9: A text image (above) and the text extracted by template matching (below).

There is a pattern in the repetition of errors. The mismatch of | for l is
pathological, and occurs 14 times in this small image (counted as 14 distinct
errors). Certain combinations of letters are repeatedly misclassified; m is seen
for ta, h for fi, and ! for th. This latter error, for example, happens four times
in this passage alone. One serious set of errors occurs in the second line of
the original text, where the word projection appears in italics. Since there are
no templates for the italic font, it is not too surprising that the recognizer fails
miserably at this point. For this example, the overall success rate (percentage
of correct characters) is 86.3%.

336 Chapter 9 ■ Symbol Recognition

Adding code that will attempt to split a glyph if it classifies with a low
probability does improve the situation. Deleting the template for | is also a
good idea, at least in this case; it causes more errors than its removal would
cause, by a large factor. The addition of glyph splitting and deletion of the |
improves the recognition, giving a success rate of 88.9% for the test data of
Figure 9.9.

Template matching is an intrinsically slow process. One way to speed it up
is to initially match only a sample of the pixels; say, one in every four. This can
be thought of as a resampling. If the match to the subset of pixels is sufficiently
good, then the remainder can be tried, to get the actual match index. If the
match is very poor, then there would appear to be no point in pursuing the
template involved, and so the match would be aborted. Figure 9.10 shows how
this would work if the template were split into four parts. A serious failure at
any of the four parts will abort the match. This method works quite well in
some cases, and is used in the printed music recognition system (Section 9.7).
In this case a speedup of about three times is achieved over the basic template
software.

(a)

T3
(b)

T4

T1 T2

Figure 9.10: Hierarchical template matching. (a) The original template. (b) The four parts
of the template used in a match. Each of these has one quarter of the pixels of the
template, so early match failures can speed things up by a factor of four. Actually, a factor
of about three is attained.

Chapter 9 ■ Symbol Recognition 337

9.3.4 Statistical Recognition
There are two ways to use features to classify objects. In statistical approaches,
which were discussed extensively in Chapter 8, many features are combined
into a large feature vector. A feature is a measurement made on a glyph, and
combining them into a vector is a simple way of collating multiple measure-
ments. Because of this, the same object can correspond to a wide variety of
feature vectors just through the errors in the measurements. However, these
measurements will be clustered in some region of N-space, where N is the
dimension of the feature vector. Hence, a statistical recognizer will construct
a feature vector from a data object and classify it based on how far (Euclidean
distance) it is in N-space from the feature vectors for known objects.

Asacontrast, thebasic ideabehind structuralpatternrecognitionis thatobjects
are constructed from smaller components using a set of rules. Characterizing
an object in an image is a matter of locating the components, which at the lowest
level are features, and constructing some representation for storing the rela-
tionships between them. This representation is then checked against known
patterns to see if a match can be identified. Structural pattern recognition is,
in fact, a sophisticated variation on template matching, one that must match
relationships between objects as well as the objects themselves. The problems
involved in structural pattern recognition are two: locating the components,
and finding a good representation for storing the relationships between the
components. Some structural approaches will be discussed in Section 9.4.

A successful statistical classifier depends on an astute selection of the
features (measurements, or properties) and their accurate measurement. Of
course, very large vectors can be used, but the execution time grows as the
size of the vector grows, and at some point the problem becomes intractable.
Still, sizes of many hundreds of elements have been used in real systems.

The features themselves should be easy to measure or, again, the execution
time of the classifier will become an issue. Fortunately there are many such
features. For instance, the ratio of the area of a glyph to its perimeter can
characterize shape, although crudely. For a circle, the area is computed by
a = πr2, and the perimeter by p = 2πr. The ratio of p2/a is 4π 2r2/πr2 = 4π .
Hence, the expression:

C = p2

4πa
(EQ 9.3)

will be unity, or nearly so, for a circular object, and will increase in value as
the shape of the region deviates from a circle (a disk, really). This measure,
called circularity, can be used as one of the features.

Since the area has already been calculated, another feature that is simple to
compute is rectangularity, denoted by R. This is simply the ratio of the area of
the region to that of its bounding box; as the shape of the region varies from
perfectly rectangular, the value of R decreases.

338 Chapter 9 ■ Symbol Recognition

The aspect ratio can be defined as the ratio of the object’s height H to
its width W. If rectangularity has been calculated, then the bounding box is
available, and the aspect ratio A can be found from that.

Other features that can be used include: the number, size, and location of
any holes (enclosed background regions) in the object; the convexity, which is
the relative amount that the object differs from a convex object; moments, of
any order; shape numbers [Gonzalez, 1992]; Euler number; and a host of others
[Parker, 1994].

Some features consist of a collection of values, and are themselves vectors.
For example, a glyph can be resampled to a small, constant size. For example,
to resample a 12×12 glyph to size of 3×3, simply group the pixels into three
groups of four in each direction (Figure 9.11). The value of each of the new
pixels is the average of the pixels in each of the nine regions, scaled to a known
range so that they can be compared fairly. The nine pixels in the resulting 3×3
image can be stored in consecutive locations in the feature vector. This will be
called a multiple feature.

222

4 2 4

3 0 3

Figure 9.11: Resampling of a glyph to provide a multiple feature. The original is split into
three parts, both horizontally and vertically. The number or fraction of black pixels in each
of the nine resulting regions contributes to the feature vector.

Other examples of a multiple feature include the slope histogram, profiles in
any direction, and signatures. A slope histogram (for example, as in [Wilkinson,
1990]) is the histogram of directions of the lines comprising the boundary of the
object. The size of the histogram depends on the bin size; for machine-printed
characters, it is unlikely that more than 16 directions will be useful, and eight
would be sufficient when used with other features. A profile, as has already
been discussed, is the sum of the pixel values in some specified direction.
Multiple directions can be used, which is rather like taking a CAT scan of the
glyph.

A signature is an interesting concept, and it can be defined in a few different
ways. While some define a signature as being the same as a projection, it can
also be defined as a one-dimensional representation of the boundary. This is

Chapter 9 ■ Symbol Recognition 339

found by computing the distance from the centroid (center of ‘‘mass’’) of the
object to the boundary as a function of angles, from zero degrees to 360 in
any chosen increment. The resulting set of distances, when properly scaled,
can be included in the feature vector. Figure 9.12 illustrates this process. In
this example, the signature values are distances indexed by the angle to the
boundary pixel. If a distance already exists at a particular angle the longer of
the two is used, yielding an outer boundary signature.

(b)
360270

(a)
180900

d

d
θ

300200100
4

6

−0

Figure 9.12: One way to compute a signature. (a) For a perfect, real circle. (b) For a
sampled glyph.

The signature computed in this latter manner is dependent on rotation and
scaling. This means that a signature found for a 12-point character cannot be
used as a template for matching a 10-point character. Attempts have been
made to normalize the signature to make it scale-independent. This is not as
simple as it may seem, although dividing all bins by the variance has been
used with some degree of success [Gonzalez, 1992]. The program sig.c is one
implementation of the procedure.

9.4 OCR on Fax Images—Printed Characters

The use of fax images introduces further complications. Although it is easily
possible to place a document on a scanner and collect an image that is within
three degrees of the true orientation, fax machines generally have page feeders,
and the intrinsic error is greater. Noise is also a greater problem; often the
image has been sent thousands of miles over somewhat grubby phone wires,
and fax image standards can use lossy compression methods. A better choice
of features may be of some help in decreasing the impact of the intrinsic
distortions.

340 Chapter 9 ■ Symbol Recognition

9.4.1 Orientation— Skew Detection
When using a scanner, a careful user can place a document so that the lines
of text are within about three degrees of the true horizontal. When using a
fax or other such device, there is no guarantee of this. The device itself often
feeds the paper across a recording device, and the text on the page may or
may not be properly aligned in the first place. Thus, one of the first steps
in attempting to read a fax image is to estimate the orientation angle of the
lines of text; this is called the skew angle, and the measurement is called skew
detection.

Skew detection can be performed in many ways, and the methods described
here form only a summary of the possibilities. In the case where an approximate
skew angle is known, a horizontal projection can be used. Recall that these were
used to identify the line positions of the text in Section 9.3.2. In cases where
the skew angle is large, there will be no parts of the projection that correspond
to a completely white band between lines. However, if the approximate angle
is known, the image can be rotated by that amount; then projections are
computed for small angles until a maximum line height and maximum white
space between lines is found. The resulting angle is the skew angle, assuming
a reasonable noise level.

For any character not having a descender (characters other than g, j, p, q,
and y) the bottom of the characters in each line are colinear. Therefore, if the
bounding box of each glyph is found, the center point of the bottom edge of
the boxes should be colinear for each line of text.

This suggests the following algorithm [Baird, 1987]:

1. Identify all the connected regions; presume that each represents a char-
acter, unless it exceeds some size threshold.

2. Find the bounding box of each region, and locate the center of the bottom
edge of the bounding box.

3. For a given angle θ compute the projection of the points obtained in
step 2, yielding a one-dimensional projection array P(θ). Baird uses a bin
size corresponding to 1/3 of the size of a six-point character at the sampled
resolution. Pi(q) is the value of the ith bin found for angle θ .

4. Maximize the function:

A(θ) =
n∑

i = 1

P2
i (θ) (EQ 9.4)

where n is the number of bins. The angle that gives the maximum is the
correct skew angle.

Chapter 9 ■ Symbol Recognition 341

Once again, an estimate of the skew angle is useful, since it will reduce the
amount of searching needed to find a maximum. If no estimate is available,
an exhaustive search can be used, but this is time-consuming. However, once
in the correct neighborhood, a coarse-to-fine search can be used. A nonlinear
least-squares method has also been suggested. The reported accuracy of this
algorithm can approach 1/30 of a degree, with 1/2 of a degree being typical.

Figure 9.13 provides an example of this method applied to a rotated image;
this was done so that the skew angle would be known, and could be compared
against the value found by the algorithm. Figure 9.13a is a portion of a text
image that has been rotated by 10 degrees; Figure 9.13b shows a 15-degree
rotation. After thresholding (Figures 9.13c–d) the first two steps of the Baird
algorithm were applied, and the points at the center of the bounding boxes
were drawn as black pixels (Figure 9.13e–f). The best-fit straight lines through
the black pixels should be at the skew angle of the text.

(b) (c)(a)

(e) (f)(d)

Figure 9.13: The Baird algorithm for skew detection. (a) Document rotated 10 degrees.
(b) Document rotated 15 degrees. (c) Thresholded version of (a). (d) Thresholded version
of (b). (e–f) Black pixels represent the bottom center of the bounding boxes of the
connected regions; these should be characters, or parts of characters. Connecting the dots
in the best way should give lines at 10 and 15 degrees.

However, instead of completing the algorithm and determining the best
angle by using projections, histograms, and least-squares computations, a

342 Chapter 9 ■ Symbol Recognition

different method for estimating the angle was tried. After all, the least-squares
criteria have been used many times already, and we will not learn anything
new. Let’s try a Hough transform for finding the lines.

The Hough transform is a method for detecting straight lines in a raster
image [Hough, 1962]. Any black pixel in an image has infinitely many straight
lines that could pass through it, one for every possible angle. Each of these lines
can be characterized by the slope-intercept form of the equation for a line:

Y = mX + b (EQ 9.5)

where the coordinates of the pixel involved are (X,Y), the slope of the line is
m, and the intersection of the line with the Y axis occurs at Y = b. Now, if this
equation is interpreted differently, so that X and Y are constants and m and b
are the coordinates, the equation can be reorganized as:

b = −Xm + Y (EQ 9.6)

which is the equation of a line in (m,b) space. Thus, a single point in two-
dimensional image space (X,Y) corresponds to a straight line in (m,b) coordi-
nates (Figure 9.14b).

(b)

(c)(a) (d)

r

ω

b
dy

dx m = dy/dx

Figure 9.14: The Hough transform. (a) Family of lines through an image pixel. (b) Slope-
intercept form of a straight line; one form of Hough space. (c) Normal form, which can
represent lines of any angle. (d) (r,w) Hough representation of three colinear points; (2,2),
(22,22) and (55,55). Angle should be 45 degrees; the estimate is 44 degrees.

Each pixel in an image corresponds to such a family of lines, expressed
in (m,b) space as a straight line itself. What is more, places in (m,b) space,
which will now be called Hough space, where two lines intersect correspond
to colinear points in image space. This is no big deal, because any two points

Chapter 9 ■ Symbol Recognition 343

are colinear, but the same is true for multiple intersections. This leads to the
following observation:

If the N straight lines in Hough space that correspond to N given pixels in
image space intersect at a point, then those N pixels reside on the same straight
line in image coordinates. The parameters of that line correspond to the Hough
coordinates (m,b) of the point of intersection.

This is the basis for the Hough transform; all pixels are converted into lines
in (m,b) space, and the points of intersection of many lines are noted, and
collected into line segments. Because there are in reality infinitely many lines,
and infinitely many points on each, the implementation is actually very much
like a histogram. A degree of quantization in (m,b) coordinates is decided upon
in advance, and a Hough image is created. For each pixel in the original image,
the line in Hough space is computed, and each pixel on that line in the Hough
image is incremented. After all pixels have been processed, the pixels in the
Hough image that have the largest values correspond to the largest number of
colinear pixels in the original image.

The slope-intercept line equation has the unfortunate property of being
unable to deal with vertical lines: The slope becomes infinite. There are other
forms of the equation of a line that do not have this pitfall, including the
normal form:

r = x cos ω + y sin ω (EQ 9.7)

where r is the perpendicular distance from the origin to the line, and ω is the
angle of that perpendicular line to the x axis. Using this equation, the Hough
space coordinates are (r, ω) as shown in Figure 9.14c–d.

The relationship between the Hough transform and skew detection should
be clear. The first steps of Baird’s skew-detection algorithm give an image with
a large collection of sets of colinear pixels. The Hough image of this should
have a primary peak at an angle corresponding to the skew angle. Taking the
Hough transform of the two examples seen in Figure 9.13 yields skew angles
of 10 and 15 degrees respectively, both of which are exactly correct. The Hough
images for these examples can be seen in Figure 9.15; the source code for a
Hough transform implementation is also shown.

(b)(a)

Figure 9.15: The Hough transform. (a) Hough transform of the image seen in Figure
9.13e. (b) The Hough transform of the image seen in Figure 9.15f. (c) Source code for
implementing a Hough transform.

344 Chapter 9 ■ Symbol Recognition

void hough (IMAGE x, float *theta)

{

 float **z;

 int center_x, center_y, r, omega, i, j, rmax, tmax;

 double conv;

 double sin(), cos(), sqrt();

 float tmval;

 conv = 3.1415926535/180.0;

 center_x = x->info->nc/2;center_y = x->info->nr/2;

 rmax =

 (int)(sqrt((double)(x->info->nc*x->info->nc +

 x->info->nr*x->info->nr)) /2.0);

/* Create an image for the Hough space - choose your own sampling */

 z = f2d (180, 2*rmax+1);

 for (r = 0; r < 2 * rmax+1; r++)

 for (omega = 0; omega < 180; omega++)

 z[omega][r] = 0;

 tmax = 0; tmval = 0;

 for (i = 0; i < x->info->nr; i++)

 for (j = 0; j < x->info->nc; j++)

 if (x->data[i][j])

 for (omega = 0; omega < 180; ++omega)

 {

 r = (i - center_y) * sin((double)(omega*conv))

 + (j - center_x) * cos((double)(omega*conv));

 z[omega][rmax+r] += 1;

 }

 for (i=0; i<180; i++)

 for (j=0; j<2*rmax+1; j++)

 if (z[i][j] > tmval)

 {

 tmval = z[i][j];

 tmax = i;

 }

 *theta = tmax;

 free (z[0]); free (z);

}

(c)

Figure 9.15: (continued)

Another skew-detection method, and one that also requires that the con-
nected regions be identified first, is based on the observation that the spacing
between characters on a line is smaller than the spacing between lines
[Hashizume, 1986]. This being the case, a line drawn between the centroids of
pairs of nearest neighbors should join adjacent characters, and the angle of the
line will be near to the skew angle. The histogram of the angles should have a
peak at the best estimate of the skew angle.

Chapter 9 ■ Symbol Recognition 345

9.4.2 The Use of Edges

A glyph has, until now, been treated as a connected black region; it is
fundamentally a raster entity. On the other hand, it is clear that the character
can be recognized using only the edge information. The basic shape and
topological properties of the character are present in an edge representation,
and there are fewer pixels to be considered, so processing times may be shorter.
The problem of locating the edges was discussed in Chapter 1, leaving the
problem of edge linking and classification using edges to be dealt with here.

Edge linking is the process of collecting the pixels into line segments. This
has also been called vectorization, when used in the context of creating a line
drawing from a raster image of an engineering diagram or a map. We begin
with either a set of edge pixels, found by applying an edge detector to a
grey-level image, or the object boundary, obtained from the bilevel glyph.
Each pixel is presumed to belong to a straight-line segment, and so adjacent
pixels are added to a set until some linearity constraint is violated. When a
set is complete, the line segment is saved as its endpoints, and the pixels in
the set are removed from the image; the next line is extracted in the same way,
and so on until no pixels remain.

The program vect.c is a simple yet quite effective boundary vectorizer that
can be used on characters. It works in the following way:

1. The object boundary is identified, and all nonboundary object pixels are
set to the background level.

2. Starting at any pixel on the outside boundary, the chain code [Freeman,
1961; Parker, 1993] of the outline is found; then a list of pixels comprising
the outline is created.

3. Starting at the first pixel in the list created in 2 above, add the next pixel
in the list to a set that will be the set of pixels belonging to the next line
in the boundary.

4. Check the distance between all pixels in the set created in 3 above and
the real straight line between the first and last pixels in the set.

5. If the distance found is less than some threshold D, then continue from
step 3, using the next pixel in the list.

6. If the distance is greater than D, then stop adding pixels to the current
line. Omit the first and last pixel in the set as the segment endpoints, and
let the next pixel in the list be the new starting point.

7. Resume the process from step 3.

This is a classical vectorization strategy, and succeeds for smaller images
like glyphs but may be less than useful for large images, such as maps and line
drawings.

346 Chapter 9 ■ Symbol Recognition

An alternative to this process involves finding the longest straight line that
can be found that passes through black pixels only. This line is saved, the
component pixels are removed, and the process is repeated. One problem with
this latter method is that the lines found need not form a connected sequence,
and some post-processing work is required to reconnect the segments into a
sensible representation of the glyph.

Figure 9.16 shows the vectorized version of a glyph, in this case a B (first
seen in Figure 9.5), and shows the effect of varying the distance threshold. The
advantages of a vectorized outline are many, including that the length and the
orientation of the line segments are now easily and accurately found, and a
rotation can be done precisely, so that the glyph orientation can be repaired.

(a) (b) (c)

Figure 9.16: Vectorizing a glyph boundary. (a) Original glyph. (b) Vectorization of outer
boundary with an error threshold of 1.0. (c) The same vectorization, but with a threshold
of 2.0.

Once the boundary of an input glyph is available in vector form, there are
a few ways that it might be used in classification. Edge matching is a tricky
technique that attempts to identify edges in the input image that correspond
to edges in each of a set of model images. The models are classified, so the
best match will provide a classification. The vectorized edges are converted
into the form (Xc,Yc, L, θ), where (Xc,Yc) is the center of the line, L is its length,
and θ is the angle the line segment makes with the x axis. If properly scaled,
a distance measure can be used to match the lines in the image with the lines
in the model. However, inaccuracies creep in since small errors in the outline
can be reflected in the vectors extracted, and the coordinate system is usually
based on a bounding box (which can also vary slightly).

The slope histogram, as mentioned previously, can also be useful, and is more
accurately generated from a vector image than from a raster one. We start by
quantizing the possible angles of line segments in the image; then we simply
create a frequency histogram of the angles that actually appear in a specific

Chapter 9 ■ Symbol Recognition 347

glyph; this defines the slope histogram. The frequency with which an angle
occurs will be the sum of the lengths of the line segments having that angle.

The degree of quantization will dictate the number of bins needed in the
histogram, and will also be reflected in the accuracy with which a match can
be made. It seems likely that no more than between 8 and 16 different angles
are required in the case of character recognition.

The example in Figure 9.17 uses eight different angles, in 22.5 degree
increments from 0 to 180 degrees. The histograms computed for the samples
in the figure are:

B: (0.3815, 0.0, 0.1439, 0.0, 0.3307, 0.0, 0.1439, 0.0)

C: (0.2733, 0.0, 0.26, 0.0, 0.2050, 0.0, 0.2609, 0.0)

D1: (0.3409, 0.0, 0.1875, 0.0, 0.2841, 0.0, 0.1875, 0.0)

D2: (0.3118, 0.0, 0.2004, 0.0, 0.2740, 0.0, 0.2138, 0.0)

D3: (0.3714, 0.0, 0.1751, 0.0, 0.2785, 0.0, 0.1751, 0.0)

(a) (b) (c)

(d) (e)

Figure 9.17: Slope histograms for a set of sample glyphs. (a) The B glyph, seen previously
(Figure 9.16a, for example). (b) A C glyph. (c) The D1 glyph. (d) D2, a D the same size as
D1. (e) D3, a D smaller than D1 and D2. All the D histograms are closer to each other
(Euclidean distance) than they are to the other glyphs.

Written as they are above, these histograms are feature vectors, or compo-
nents of a larger feature vector. This set of characters was selected because,
on the face of it, they appear to contain similar sets of directions (although in

348 Chapter 9 ■ Symbol Recognition

different places). The C was selected for contrast. When the histograms, which
have been normalized by dividing by the total length of all the vectors, are
treated as vectors, the smallest distance between any of the D histograms is
smaller than the distance between a D glyph and either of the others. There is
one case (D3) where the B is closer to D3 than is D2, but the glyph would still be
classified correctly. The program slhist.cprovides a sample implementation.

The matrix of distances for this small case is:

B C D1 D2 D3

B 0.00000 0.23383 0.08730 0.12709 0.06909

C 0.23383 0.00000 0.14653 0.10961 0.17203

D1 0.08730 0.14653 0.00000 0.04251 0.03562

D2 0.12709 0.10961 0.04251 0.00000 0.07557

D3 0.06909 0.17203 0.03562 0.07557 0.00000

One last suggestion is a vector template style of match; this involves reducing
the shortest vector to one pixel in length, and then scaling the rest of the vectors
by the same factor. The result is replotted in a small raster, and a standard
template match is performed against templates found in the same way from
training data. If the match value is worse than some value X, we rescale again
using the next shortest line, and so on.

The program learn3.c will read the standard test image and create a
database of feature vectors. It can be modified to calculate any set of features
desired, and store these in a file. ocr3.c will read this database, then read a
text image and attempt to match the feature vectors from the image against
those in the database, performing a minimum distance classification.

9.5 Handprinted Characters

The major problem encountered when attempting to classify handprinted
characters is their inconsistency. It is not possible for a human to print a
character in exactly the same way twice. Many matching algorithms, especially
those using templates, depend on consistency in order to function, and the
further apart the template is from the input glyph, the less likely the correct
match is to be located. What is needed are methods that use characterizations
of general shape and structure, rather than pixel-level features (which are
more likely to vary from glyph to glyph).

In this section a number of methods for classifying images as handprinted
digits will be considered, both statistical and structural. In addition to provid-
ing an exposure to a diverse collection of methods, it is also possible that all

Chapter 9 ■ Symbol Recognition 349

the algorithms can be applied to the same glyph. The result of using many
different techniques is an increased confidence in the result in the cases where
they agree, and an increased ability to determine the possibility of error in
cases where they do not agree. It is generally considered that an algorithm
that can indicate that it cannot classify a glyph is superior to one that performs
the classification in error. The goal is to minimize the error rate, even if this
increases the number of unclassified characters. An inability to classify is
termed a rejection, and is not normally counted as an error.

Four methods for handprinted-digit recognition will be examined in this
section. The test data, which cannot be included on the website for reasons
of copyright, consists of two sets of 1000 digits each, in glyph form. One set
was used for training the recognition algorithms, and the other was used for
assessing their performance. One should not test a recognizer using the same
data on which it was trained.

One way to examine the behavior of a symbol-recognition program is to
use the confusion matrix. This is a two-dimensional array of classifications; the
columns represent the classification of the symbol by the algorithm under
scrutiny, and the rows represent the actual value of the symbol.

For example, the following confusion matrix was computed for a program
that would recognize the four letters A, B, C, and D:

A B C D

A 96 2 0 2

B 0 98 0 2

C 0 0 100 0

D 0 1 0 99

There were 100 test glyphs of each type used in this example; note that each
row sums to 100. This will be true unless there are rejected (unclassifiable)
glyphs in the data set. The values in the first row represent the number of
classifications of each type for the glyphs that were actually A. Most of the A
glyphs were in fact classified as A, but some were not. In the failed cases, we
can see what, and how severe, the confusion was.

The columns represent the data as classified. For example, in the last column
we can see that for the glyphs that were classified as D, 99 of them were
correct, and four were in error. There is a lot of useful information in a
confusion matrix, as will be seen in later sections.

9.5.1 Properties of the Character Outline
In a collection of interesting articles, Shridhar et al. [Shridhar, 1986; Shridhar,
1987; Kimura, 1991] describe a collection of topological features that can be

350 Chapter 9 ■ Symbol Recognition

used to classify handprinted numerals. Most of these features are properties
of the outline, or profile, of the numeral. For instance, a digit 8 might be
described as having a smooth profile on both the left and the right sides, and
as having the width at a minimum in the center region. Not all handprinted 8
digits would be recognized by this description, and certainly some other digits
might also have this description; the idea is to provide a sufficient number of
descriptions for each digit that a high recognition rate can be achieved.

Figure 9.18 shows how the left and right profiles are defined and calculated
for a sample digit 9. After the digit is isolated and thresholded, the number of
background pixels between the left side of the character’s bounding box and
the first black pixel is counted and saved for each row in the bounding box.
This gives a sampled version of the left profile (LP), which is then scaled to a
standard size; in this case, 52 pixels. A similar process gives the right profile
(RP); the difference is that the last black pixel on each row is saved.

10

5

0 10 20 30 40 50

0

Di
st

an
ce

Lmin

Lmax

Left Profile LP(k) Right Profile RP(k)
0 10 20 30 40 50

16

12

14

10

Di
st

an
ce

Rmin
Rmax

Figure 9.18: Simple properties of the Left and Right profiles. These are the profiles for a
9 glyph.

Having the profiles, the next step is to measure some of their properties.
For example, one important property is the location of the extrema: Lmin is the
location of the minimum value on the left profile, and Lmax is the location of
the maximum value. There are similar properties Rmin and Rmax on the right
profile. For a 9 digit, it would be expected that Lmin would occur in the top half
of the character, as shown in Figure 9.1, but for a 6, Lmin would be in the lower
half. Using these measures alone can often distinguish between some of the
digits.

At this stage some other simple measures can also be useful, such as:

W(k) = width at position k = RP(k) − LP(k).

Wmax, the maximum width of the digit; this is W(k) at some point k where
RP(k) − LP(k) is a maximum.

R, the ratio of height to maximum width.

Chapter 9 ■ Symbol Recognition 351

The use of R alone can identify a large majority of the 1 digits; a 1 has a very
large R value compared with all other digits.

Now another set of features can be defined on the left and right profiles
based on first differences. Let LDIF(k) = LP(k) − LP(k − 1) and RDIF(k) =
RP(k) − RP(k − 1). Large values of LDIF imply a large change in the profile at
the specified point, and this can assist in classification. For example, the change
in the profile of the 9 in Figure 9.18, near position 30, would give a large value
of LDIF at this point, and that fact is characteristic of the digits 3 and 9. The
locations of the actual peaks in LDIF and RDIF and their values happen to be
quite important in characterizing numerals, and the peaks are located using a
range rather than a single position. Thus, a digit 5 would have the RDIF peak
near the top of the digit, and the peak would have a relatively large value. This
set of features is not comprehensive. In all, 48 features are used and others
could be defined. The features used in the recognizer described here [Shridhar,
1986] are listed in Figure 9.19.

In the training phase, all 48 features are computed for each sample numeral
and a feature vector is created in each case. The features are binary, being
either TRUE or FALSE; for example, feature number 43 is TRUE if the width
of the character at row 20 is greater than or equal to the width at row 40
(W(20) >= W(40)). Then all the resulting bit strings for each digit are searched
for common elements, and the features in common for each digit class are
stored in a library. Matching is performed by extracting the profiles of the
input image and measuring and saving the bit string (feature vector) that
results. This string is matched against the common elements of the templates;
this is obviously very fast since only bit operations are involved. A perfect
match of a library bit string against an input string results in the corresponding
digit class being assigned to the input digit.

The bit strings identified for the sample data (1000 digits) used for this
purpose are:

123456789012345678901234567890123456789012345678

*******0**0**********1******0**0******0****1*1**0

****************0******1**********************1*1

******************0********1************0****0**2

0****1*******0*****1*1****0****000*******0*****13

***********0********0***********0***00*******10*4

0*0**********0*****0********************1******15

1******0***********************0******0*1**1***16

*****1*1*****1*******1****0****0*0**************7

00000*0**0***1************0*****0**0*****18

0*0*********0****1****0****00*******0*1*****9

where * represents a ‘‘don’t care’’ situation. The results from this method
are, again, only acceptable at this stage, with an overall rate of 94.2%. The
recognition rates for our samples are outlined in Table 9.1.

352 Chapter 9 ■ Symbol Recognition

Feature #

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Lpeak < 10; 02<=R2<=50
Lpeak < 5; 02<=R2<=10
Lpeak > 5; 02<=R2<=15
Lpeak > 10; 02<=R2<=15
Lpeak > 10; 02<=R2<=20
Lpeak > 5; 02<=R2<=25
Lpeak > 5; 05<=R2<=15
Lpeak > 5; 05<=R2<=35
Lpeak > 10; 05<=R2<=40
Lpeak > 10; 10<=R2<=30
Lpeak > 10; 15<=R2<=40
Lpeak < 5; 25<=R2<=50
Lpeak > 10; 30<=R2<=50
Lpeak < 5; 30<=R2<=50
Lpeak < 5; 35<=R2<=50
Lpeak > 10; 35<=R2<=50
Lpeak > 5; 40<=R2<=50

Rpeak > 10; 02<=R2<=50
Rpeak > 10; 02<=R2<=15
Rpeak < 10; 02<=R2<=30
Rpeak < 5; 02<=R2<=45
Rpeak < 10; 25<=R2<=45
Rpeak > 10; 25<=R2<=50
Rpeak < 5; 25<=R2<=50
Rpeak > 10; 30<=R2<=50
Rpeak > 5; 35<=R2<=50
Rpeak > 10; 35<=R2<=50
Rpeak > 5; 40<=R2<=50

18
19
20
21
22
23
24
25
26
27
28

29

30

Rmin(1<=R1<=30) is less
than Rmax2(Rmin<=R1<=30) and
greater than Rmax1(1<=R1<=Rmin)
Rmin(10<=R1<=40) is less
than Rmax2(Rmin<=R1<=40) and
greater than Rmax1(1<=R1<=Rmin)

RP(Rmin)=RP(Rmax) where Rmin
in the range 5<=R1<=25, and
Rmax in 1<=R1<=Rmin

RP(Rmin)=RP(Rmax),Rmin in the
range 5<=R1<=25, and Rmax
in the range 1<=R1<=Rmin
RP(Rmin)=RP(Rmax), Rmin in
5<=R1<=25; Rmax in Rmin<=R1<=40

Lmax< Lmin; Lmax in 1<=R2<=30;
Lmin in 1<=R2<=Lmax
Lmax< Lmin; Lmax in 10<=R2<=30;
Lmin in 10<=R2<=Lmax
Lmax< Lmin; Lmax in 10<=R1<=30;
Lmin in 10<=R1<=Lmax
Lmax< Lmin; Lmax and Lmin in
range 15<=R1<=45
Lmax< Lmin; Lmax and Lmin in
range 20<=R1<=50
Lmax< Lmin; Lmax and Lmin in
range 20<=R1<=50

31

32

33

34

35

36

37

38

39

40

41

42

43
44
45
46

47
48

Feature calculation Feature # Feature calculation

Rmin<Rmax; Rmin in 1<=R1<=30
and Rmax in 1<=R1<=Rmin
Rmin<Rmax; Rmin, Rmax in range
20<=R1<=35
Rmin<Rmax; Rmin, Rmax in range
35<=R1<=50

W(20)>=W(40)
W(25)>=W(10)
W(25)>=W(40)
W(25)>=W(45)

Ratio > 2.5
Wmin<Wmax1 and Wmin<Wmax2
where Wmin = W(Lmin) between 10
and 40; Wmax1 is max of W between
1 and Lmin; Wmax2 is max of W from
Lmin to 50.

Figure 9.19: The 48 profile features used to recognize digits.

Table 9.1: Object Outline Method — Recognition Rates

0 1 2 3 4 5 6 7 8 9

% RIGHT 94 95 96 100 95 100 84 94 90 94

% ERROR 1 4 1 0 5 0 10 5 4 6

% REJECT 5 1 3 0 0 0 6 1 6 0

Chapter 9 ■ Symbol Recognition 353

The recognition rates could be improved by using multiple feature sets
for each digit. However, identifying optimal feature sets automatically is a
computationally hard problem. One other option would be to specify the
features in subsets: For example, a 6 may be classified by the fact that one of
the features {2,6,7,21} is true, one of {5,43} is true, and all but one of {1,32,33,41}
are true. Again, the number of possible combinations makes identification of
optimal feature groupings a very difficult task.

Since an optimal template or set of templates is hard to find, one other
possibility is to use a set of 1000 digits as training data and build a library or
database of bit strings having known classifications. These are used to identify
unknown glyphs using the standard statistical method: the bit string in the
database that is closest, in a Euclidean sense, to the bit string obtained from
the unknown glyph provides the classification.

The purely statistical method above does give a slightly higher recognition
rate at 94.7%, but takes significantly longer to execute. In addition, some
digits are recognized very well (100% of the 2, 3, and 5 samples) whereas
others are quite poor (86% of 7s). The program recp.c (on the website) is an
implementation of this algorithm. It uses the file prof.db as the database of bit
strings, obtained by processing the test digits.

9.5.2 Convex Deficiencies
A digitized character image consists of pixels, usually black on a background
of white. Structural character-recognition techniques attempt to collect the
black, or object, pixels into sets that represent a feature in a model of an
object to be recognized. Features may be lines or curves, for example. Then
an effort is made to determine the relationships between the features and to
compare these against the relationships in the model, hoping to find a match.
Statistical techniques involve the determination of statistical relationships
between properties of object pixels. For example, the character image could
be divided into nine equal areas and the average grey level or number of set
pixels in each area could be measured. This gives nine values that can be stored
in a feature vector and matched against existing template feature vectors by
using a distance function.

There are numerous problems with existing methods, the basic one being
that none of them work well enough in all situations. This suggests a slightly
different approach — why not use the more numerous background pixels as
a basis for classification? Noise, in the structural sense, ought to have less
influence, but similar methods to the ones applied to object pixels should still
yield results.

354 Chapter 9 ■ Symbol Recognition

Although most character-recognition systems are concerned with the pixels
belonging to the characters themselves, there are good arguments to be
made for analyzing the size, shape, and position of the background regions
surrounding the character image. Certainly the number and position of the
holes has been used; for example, an 8 has two holes, one in the upper part and
one in the lower part of the character image, and a 0 has one in the middle.
However, there are other such features that might be used to classify images;
for example, a numeral 2 has a left-facing concave region in the top half of the
image and a right-facing one in the bottom half. A more complete analysis of
these convex deficiencies may permit the development of a classification scheme
based on the background regions.

For use with digital character images, a relatively crude but effective scheme
has been developed. From each background pixel in an input image an attempt
is made to draw a line in each of the four major directions (up, down, left,
and right). If at least three of these lines encounter an object pixel, then the
original pixel is labelled with the direction in which an object pixel was not
encountered — called the open direction. If none of the four directions are
open then the pixel concerned is part of a hole, and is labelled with a zero.
Figure 9.20 shows the direction labels, and illustrates the process of locating
and labelling the convex deficiencies.

(a) (b) (c)

0

0

4

0

1

3

2
2

4

Figure 9.20: Locating convex deficiencies. (a) Codes for the directions. (b) Background
pixels are tested to find the open directions (this one is 2). (c) Regions found for a 6 — one
of the holes (connected to the 4 region) is not real, and will be connected to another
region.

Some of the holes identified in this way are not holes at all, but are part of a
convoluted region in the image. A real hole will have boundary pixels that all
belong to the object; if this is not true, then the hole is false, and it is converted
into a region labeled by its most common nonobject neighbor. Figure 9.21
shows the C code needed to locate and classify the basic convex deficiencies
in the raster image.

Chapter 9 ■ Symbol Recognition 355

int czones (struct image *x)

{

int i,j,k,left,right,up,down;

struct image *z=0;

copy (x, &z, &k);

for (i=0; i<z->info->nr; i++)

for (j=0; j<z->info->nc; j++)

{

if (x->data[i][j] == 0) z->data[i][j] = 255;

else

{

up = 0; down = 0; left = 0; right = 0;

for (k=i-1; k>=0; k--) /* Check upwards */

if (x->data[k][j] == 0)

{

up = 1; break;

}

for (k=i+1; k<x->info->nr; k++) /* Check down */

if (x->data[k][j] == 0)

{

down = 1; break;

}

for (k=j; k>=0; k--) /* Check left */

if (x->data[i][k] == 0)

{

left = 1; break;

}

for (k=j+1; k<x->info->nc; k++) /* Check right */

if (x->data[i][k] == 0)

{

right = 1; break;

}

/* Consolidate these directions */

if (left && up && right && down)

z->data[i][j] = 0;

else if (left && up && right)

z->data[i][j] = 1; /* Open down */

else if (up && right && down)

z->data[i][j] = 2; /* Open left */

else if (right && down && left)

z->data[i][j] = 3; /* Up */

else if (down && left && up)

z->data[i][j] = 4;

else z->data[i][j] = 255;

}

}

}

Figure 9.21: Sample C code for finding and classifying convex deficiencies.

356 Chapter 9 ■ Symbol Recognition

After all the regions are labelled, they are counted and measured. Very
small regions, relative to the number of pixels in the object, are ignored, and
the largest four regions are used to classify the image. Sometimes a relatively
simple relationship exists. For example, 99% of all zeros can be identified by
the large central hole and lack of other convex deficiencies. The next more
complex scheme uses relative positions of the regions; for example, an 8 has
two holes, one above the other, a left-facing region on the left of the two
holes, and a right-facing region on the right of the holes. The most complex
schemes require shape information in addition to size and position. As an
example, some 7 digits and some 3 digits both have a large left-facing region
on the left side of the image. However, this region is convex for the 7 but
nonconvex for the 3. This fact can be used to discriminate between some 7s
and 3s.

An important aspect of the method involves not being too specific about the
sizes of the regions. The algorithm discards as unimportant any region that
has an area less than 10% of the object. Then regions are classified as large or
small. In addition, the regions are sorted according to size and only the largest,
whatever the actual area, are used. For example, when looking for a 2, only
the largest two regions are examined: one is expected to be a left-facing region
at the top, and the other is expected to be a right-facing region at the bottom.
Position, too, is intentionally classified in only a crude manner as top, bottom,
left, or right, with a special flag set for those regions that are sufficiently close
to the center (either horizontally or vertically or both). This provides an overall
description of the background geometry that provides enough information
to classify the image according to digit type, but is not overly affected by
the usual variations in line thickness, orientation, size, and shape found in
handprinted character images.

Table 9.2 provides a sample set of digit descriptions in terms of convex
deficiencies. It is not complete; sometimes a dozen different descriptions are
needed for a single digit. Still, it should serve to give the flavor of the kind of
description that will work.

The recognition rate achieved using this method is acceptable, averaging
about 94%. Table 9.3 details the recognition rate for convex deficiencies.

This approach has the advantage of not requiring a thinning step [Holt, 1987;
Zhang, 1984], although smoothing the outline does help, and a morphological
closing step might improve the rates for 8, 6, and 9.

The 94% recognition figure could be improved with the addition of more
feature sets, or sets that discriminated more thoroughly. Once the obvious
features are included, what remains is essentially a matter of common sense
and trial-and-error to find the features that discriminate the best.

Chapter 9 ■ Symbol Recognition 357

Table 9.2: Convex Deficiencies Digit Descriptions

DIGIT OPEN DIRECTION SIZE LOCATION SHAPE

0 0 middle center convex

1 None — — —

2 2 middle upper left —

4 middle lower right —

3 2 large left-of nonconvex

4 small right —

4 3 middle upper —

5 4 middle upper right —

2 middle lower left —

6 4 middle above —

0 middle lower —

7 2 middle left —

8 0 middle upper —

0 middle lower —

2 small left —

4 small right —

9 0 middle not-center, above —

4 middle lower —

Table 9.3: Recognition Rate — Convex Deficiencies

0 1 2 3 4 5 6 7 8 9

99% 94% 98% 96% 94% 90% 90% 93% 95% 92%

9.5.3 Vector Templates
Template-matching techniques in many forms have been applied to the prob-
lem of recognizing handprinted digits using a computer. The basic idea is
that each digit has a particular shape that can be captured in a small set of

358 Chapter 9 ■ Symbol Recognition

models, usually stored as raster images. An incoming (unknown) digit, also
in raster form, is compared against each template, and the one that matches
most closely is selected as belonging to the same digit class as the unknown.
The system that performs template matching can be ‘‘taught’’ new forms by
simply adding new templates to its sets. This is often done when an incoming
digit cannot be identified well enough; a human classifies it, and the unknown
image can be added as a new template if desired.

Once the learning phase is complete, template-based recognition meth-
ods work quite well for machine-printed characters. These are uniform in
size, shape, and orientation, and preprocessing methods can be devised that
produce quite recognizable characters for any particular document or set of
documents that were created in the same way. On the other hand, characters
printed by a human show a large degree of variation in shape, size, orientation,
and grey-level intensity, even in sets of characters printed by the same person.
This variation mitigates against the use of templates.

One likely solution is to represent the template digits as vectors. This is
commonly done in computer typography systems, where the fonts are stored
in vector form. This permits easy scaling and rotation, allowing one set of
characters to be used for all sizes, plus bold and italic forms. The fonts were
originally produced, painstakingly and with human assistance, so as to be of
high visual quality when scaled to large sizes and thick line widths. Although
fonts are often stored as outlines, it seems that the vector form generally has
the properties needed of a good template.

For applications in digit recognition, vectors that form the skeleton of the
characters are used rather than those that form the outline. This yields a good
abstraction of the shape, and permits the lines to be thickened in an arbitrary
way. The templates are stored as sets of four integers, those being the starting
and ending row and column on a standard grid. All templates have the same
size, 10 by 10; this means that all coordinates in any template have an integer
value between 0 and 9 inclusive. Given a scale and rotation, then, all templates
in the collection would be modified in a consistent way.

There have been some efforts to normalize handprinted characters, but these
are only successful for certain types of variation. Orientation, slant, and scale
can be accounted for to some extent, but other aspects, such as line thickness,
have not been. Thus, either an enormous number of raster templates are
needed to account for all possible variations, or standard template-matching
techniques fail. There is enough difference in shape between different digits
to permit human recognition at high rates of success; perhaps the templates
should abstract the shape more accurately than possible using a raster model,
which depends on individual pixel-to-pixel correspondence and not more
global shape properties.

A vector template can be produced using only a pencil and perhaps some
graph paper, and indeed, the first set of templates was generated in just this
way. An example appears in Figure 9.22, which shows a template for the

Chapter 9 ■ Symbol Recognition 359

digit 2. Figure 9.22a shows the vector coordinates that were obtained manually
from a line drawing of a 2 on a 20×20 grid. This is drawn as lines (Figure 9.22b)
using the original scale, and also using a new scale: 20×10 (Figure 9.22c). This
particular template is, by itself, able to match over 80% of the sample 2 images
encountered in the test data set, when the matching method described below
was used.

(b) (c)

3, 0 - 0, 3
0, 3 - 0, 6
0, 6 - 3, 9
3, 9 - 9, 0
9, 0 - 9, 9

(a)

Figure 9.22: An example vector template. (a) The coordinates of the vector endpoints for
a 2 template. (b) Vectors drawn on a 20×20 grid. (c) Vectors drawn on 20×10 grid.

It is also possible to create a template from a data image, and this might
be desirable when starting to process data from a new source. The first step
in this process is to threshold and then thin the input image. Thinning can
be done using any competent algorithm: we have used both Holt’s variation
on Zhang-Suen (Section 6.3) and the force-based method (Section 5) to yield
acceptable sets of skeletal pixels. The result is a binary image in which only
skeletal pixels have a value of 0; all others are 1. Figure 9.23 gives an example
of this process, showing the original input image, the thresholded version, and
the skeleton as located by both thinning methods.

(b) (c)(a)

Figure 9.23: Converting a raster digit image into a vector template. (a) The original digit
image. (b) Thinned version, using Zhang-Suen. (c) Thinned version using force-based
thinning (Parker et al).

360 Chapter 9 ■ Symbol Recognition

At this point the pixels are collected into sets, each representing a curve. An
end pixel is found (either a pixel connected only to one other, or an arbitrary
starting point if no such pixel exists) and the set of pixels connected to it are
saved, taking care to trace only one curve. The method described in Lam and
Suen works very well here. Finally, a set of vectors is extracted from each curve
using a recursive splitting technique, a relatively simple and common method
for vectorizing small, simple images. Briefly, the endpoints of the curve are
presumed initially to be the start and endpoints of a line, and the distances
between all pixels in the curve and the mathematical line are computed. If the
maximum distance for this set of pixels exceeds a predetermined threshold,
then the curve is broken into two curves at the pixel having that maximum
distance, and the same procedure is applied again (recursively) to each of
the two curve sections. Alternatively, if the maximum distance is less than
the threshold, then the curve is presumed to be an approximation to a line,
and the endpoint coordinates are saved as one of the vectors in the template.
The coordinates are scaled down to the standard 10×10 grid after the extent
of all the vectors has been determined. Figure 9.24 shows this vectorization
process applied to the skeleton of Figure 9.23b, and shows its final appearance
after being scaled. This particular template matched over half of all the 6
images in the test data set. The program that creates templates from images
actually generates C code for the initialization of the template data array in the
matching program.

(b) (c)

A: (18, 40) (27, 32)
B: (27, 32) (30, 32)
C: (31, 32) (35, 29)
D: (35, 29) (46, 29)
E: (46, 29) (49, 33)
F: (49, 33) (47, 40)
G: (47, 40) (40, 44)
H: (40, 44) (34, 43)
J: (34, 43) (31, 40)
K: (31, 40) (31, 33)

(a)

17 :
18 : A. A
19 : A
20 : A
21 :A

23 : A
22 : A

24 : A
25 : A.
26 : A
27 :+

29 :B
28 :B

30 :B
31 : + KC K K K KK +
32 : C J
33 : CJ ..

35 : . . . +. H
34 : C +

36 : . . . D. H
37 : . . . D. H. ..
38 : . . . D. H. ..
39 : . . . D. H. ..

41 : . . . D. G
40 : . . . D. +. ..

42 : . . . D. G

44 : . . . D. G
43 : . . . D. G

45 : . . . D.G ..
46 : . . . +. G
47 : E F. +
48 : E . FE F F F .F

50 :
49 : +

Figure 9.24: Finding vectors in the thinned image. (a) The curves encountered (2 of
them). (b) Extracted vector coordinates. (c) Vectors (linear features) marked in the thinned
image.

Once all the templates have been generated and there are multiple templates
for each digit, the system is ready to recognize digits. An incoming image is
first preprocessed in any desired fashion and is then thresholded. The width

Chapter 9 ■ Symbol Recognition 361

of the lines in the image is then estimated using horizontal and vertical scans.
A histogram containing the widths of the black portions of the image on all
slices is produced, and the mode of this histogram has been found to be a close
enough approximation to the actual line width. A better approximation can
be had by computing the gradient at each pixel on the outline of the digit and
finding the width of a slice through the digit in a direction perpendicular to the
outline at that point, but this rarely gives a result sufficiently better to be worth
the extra computation time. While the line width is being computed, the actual
extent of the digit image is also found so that the templates can be scaled. This
is saved as the coordinates of the upper-left and the lower-right pixels.

At this point the scaling factors for the templates can be computed. The
templates will be scaled in the x and the y directions independently, and
the same scale factors can be applied to all templates. The factors include an
adjustment that results in a correct scaling accounting for the thickness of
the line. Now the template vectors are drawn into an otherwise clear image
the same size as the input image, producing an initial raster template that
represents the scaled skeleton. Finally, each pixel is ‘‘grown’’ equally on all
sides to give a line width comparable to that found in the input image. The
result is a raster template with some similar properties to those found in the
input image. Figure 9.25 illustrates the process of generating a raster template
from a vector one.

(b) (c)(a)

Figure 9.25: Matching using a vector template. (a) Input digit image (to be matched). (b)
Scaled vector template. (c) Thickened vector template (not a good match here).

The matching process is somewhat different from that used in other template
matching systems, but the goal is still to produce a measure of distance between
the template and the image. The first step is to locate those pixels that are
black in both images. These have a distance between them of zero, and
are ignored in future processing. Next, each black pixel in the image has its
nearest corresponding pixel in the template located and marked. The 8-distance
between these pixels is noted, and a sum of these distances is computed. After
all image pixels have been assigned corresponding pixels in the template

362 Chapter 9 ■ Symbol Recognition

the total distance is an initial measure of similarity. Efforts have been made
to reduce the distance total by looking at pairs of corresponding pixels and
swapping those having a smaller distance after being swapped. This is a very
time-consuming process, and does not greatly improve the distance.

At this point a numeric value that can be used as a goodness of match
metric has been found. It is normalized to a per-pixel distance and stored as a
measure for the digit having the same class as the template. The class having
the smallest such measure over all templates is chosen as the class of the input
digit image. Figure 9.26 shows the overlapping pixels and a distance map for
the example begun in Figure 9.25.

(b)(a)

Figure 9.26: The final stages of the template match. (a) Pixels that overlap between the
template and the image. (b) Distance map between template and image. Darker pixels
are farther away.

There is a problem with using this method to match a 1, or any other object
that has an extreme ratio of height to width. The problem is that the vectors for
almost any template will match after having been scaled to fit. For example,
the sides of a 0 will be brought together and the central hole will be filled
in due to the width of the two lines. When recognizing 1 digits, we used
one template for those cases where the image is sufficiently wide (2% of the
sample) and a combination of aspect ratio and line width vs. image width for
the rest of the cases. Once the 1 digits were recognized, templates were used
in all the remaining cases.

The software implementing this method is called recv.c. It has been exe-
cuted on many computers over the years, and is relatively quick and very
accurate when correctly trained. In fact it won an international competition for
handprinted symbol recognition in Barcelona in 2000 [Askoy, 2000].

Recognition rates on the 1000 digits of test data are excellent. The overall
rate of recognition was 94.3%. Table 9.4 details the results.

Chapter 9 ■ Symbol Recognition 363

Table 9.4: Vector Template Digit Recognition Rates

0 1 2 3 4 5 6 7 8 9

CORRECT 99% 94% 98% 96% 94% 92% 90% 93% 95% 92%

There are multiple templates for each digit, but not necessarily the same
number. Table 9.5 outlines the number of templates per digit.

Table 9.5: Number of Templates per Digit

0 1 2 3 4 5 6 7 8 9

1 1 3 1 5 3 2 4 4 4

The vector template method has been applied to symbols extracted from
maps, and to music recognition. For an example of this, Figure 9.27 shows
a quarter rest, the vectors, and a scaled template. Experiments have shown
that scale is still an issue in that there is a better rate of recognition when the
template and the data are about the same size. The method works best when
large glyphs are vectorized into templates.

(b)

1: (0, 1) (2, 6)
2: (2, 6) (3, 6)
3: (3, 6) (4, 3)
4: (4, 3) (6, 4)
5: (7, 0) (9, 1)
6: (7, 9) (6, 5)
7: (6, 4) (7, 0)

(c)(a)

0 : .
1 : .
2 : .
3 : .
4 : 5
5 : 5
6 : 5
7 : 5
8 : 5
9 : 5

10 :
11 :
12 :
13 :
14 :
15 :
16 :
17 :
18 :
19 :

21 :
22 :
23 :
24 :
25 :
26 :
27 :
28 :
29 :
30 :
31 :
32 :
33 :
34 :
35 :
36 :
37 :
38 :
39 :
40 :
41 :
42 :
43 :
44 :
45 :
46 :
47 :
48 :
49 :
50 :
51 :
52 :
53 :
54 :

20 :

. 5

. 5

. 5

. 5

. 5

. 5

. 5

. 5

. 5

. 5

. 5

. 5

. 5

. 5

. 5

. 5

. 5

. 5

. 5

. 5

. 5

. 5

. 5

. 5

. 5

. 5

. 5

. 5

. 5

. 7

. 7 7 7 . 6

. 7 7 6

. 7 6

. 7 6 6

. 7 6

. 7 6

. 7 6

. 7 6

. 7

. 7

. 7

. 7

. .

. .

. 5

0 1 27 8 94 5 61 2 38 9 05 6 72 3 40 1

Figure 9.27: Vector templates applied to music symbol recognition. (a) A quarter rest. (b)
The vectors extracted, in template creation. (c) The final template.

9.5.4 Neural Nets
The use of artificial neural systems (ANS) for various recognition tasks is
well-founded in the literature [Aarts, 1989; Ansari, 1993; Carpenter, 1988;
Fukushima, 1983; Mui, 1994; Shang, 1994; Touretzky, 1989; Yong, 1988].

364 Chapter 9 ■ Symbol Recognition

The advantage of using neural nets, as they are commonly called, is not that
the solution they provide is especially elegant or even fast; it is that the system
‘‘learns’’ its own algorithm for the classification task, and does so on actual
samples of data. Indeed, the same basic neural net program that recognizes
digits can also be used to recognize squares, circles, and triangles.

The goal of this section is not to explore thoroughly the use of neural nets;
rather, the goal is to provide a summary of neural nets for the uninitiated,
to show the utility of the method, and to provide pointers to more detailed
information.

9.5.4.1 A Simple Neural Net
Before devising a neural net for recognizing digits, let’s look at a simple
example in an effort to explain the basic ideas. What is commonly called a
neural net is an interconnected set of processing elements (PEs), each of which
performs a very simple calculation. A single processing element, as shown in
Figure 9.28, has some number of inputs, a weight value for each input, and an
output value, which can be fanned out and used as inputs by other elements.
Each of these values is numeric. The value associated with any node is called
its activation, and is simply the sum of each input value multiplied by its
respective weight value. The output of the PE may be simply the activation
value, but is most often a function of the activation: the activation function,
sometimes called the output function.

(b)(a)

Input1

Output

Acivation = ∑(InputiWi)

Input2

Input3

W3

W2

W1

In1 = {1,0}

In2 = {1,0}

Out = {1,0}

W1 = 1

W2 = 1

Figure 9.28: Neural net basics. (a) A single processing element with three inputs. (b)
A processing element configured to operate as an AND function with two inputs.

A processing element is a primitive model of a neuron. Like a real neuron,
there are many input values that interact (are summed) to produce an output.
The response of a neuron is to fire, or to send a pulse-like signal to its output.
In a real neuron, some of the inputs actually inhibit the firing; these would
correspond to PE inputs having a negative weight value. Other neuronal
inputs encourage the neuron to fire, which corresponds to a positive weight.

Chapter 9 ■ Symbol Recognition 365

Often a single input is not sufficient to cause firing, which is why a PE sums
all the weighted inputs.

The activation function ensures that the PE output values fall into a prede-
fined legal range. For example, the PE in Figure 9.28b accepts binary input
values and generates a binary output value. Since there are two inputs and
both weights are 1, the four possible activations for this PE are:

INPUTS ACTIVATION

In1 In2

0 0 0

0 1 1

1 0 1

1 1 2

Since the output is supposed to be binary some thresholding must be
performed, and this is done by the activation function. Suppose that this PE
is to respond in the same way as a Boolean AND; in that case, the output
should be 0 unless both inputs are 1, in which case the output should be 1. An
activation function that performs in this manner is:

f (A) =
{

0 if a < 1.5
1 if a > 1.5

(EQ 9.8)

That is, if the activation is 1 or less the output is 0; otherwise it is 1.
Processing elements are not used alone, but are connected as a graph, more

commonly called a network. The output from a set of PEs can be used as inputs
to another, or to many. There can be as many stages (layers) as is desired, and
as many elements in each layer as needed.

Figure 9.29 shows two quite simple nets. The first (9.29a) is a combination of
three of the two-input AND elements configured to act as a four-input AND.
The interconnections are done in the obvious way, which is basically the same
way we would wire up AND gates in a logic circuit. The second example
(9.29b) shows a two-input AND that has a TRUE output and a FALSE output.
The first layer of processing elements (to the left, and called the input layer)
simply distribute their inputs over two outputs. The second layer of elements
(to the right, called the output layer) each computes one of the AND values
of their inputs. One responds if the inputs are both 1 (TRUE), whereas the
other responds in all other situations. A simple way to accomplish this is to
set the input weights of the input elements to 1 and pass this value through
to the output. The TRUE element of the output layer is an AND element
from Figure 9.27b, and the FALSE element is a TRUE element but with the

366 Chapter 9 ■ Symbol Recognition

thresholding in the activation function reversed (i.e., return 0 if the activation
is >1, and 1 otherwise).

(b)(a)

Input layer Output layer

True

False

Figure 9.29: Simple neural nets. (a) A four-input AND, built from three two-input ANDs.
(b) A two-input AND having discrete TRUE/FALSE output values.

Pleased with our success at this task, we now try to implement other logic
functions. An OR is easy enough, but problems are encountered with the
exclusive OR function (XOR). No matter what weights or activation functions
we try, the XOR cannot be implemented. Why not? Let’s take a closer look at
what the PE for AND is actually doing.

In Figure 9.30a, the four possible inputs for the AND element are plotted in
two dimensions; they can, in fact, be thought of as vectors. The line 1.5 = w1

Input1 + w2Input2 has been plotted in the same graph; note that the line divides
the input values into two sets: one set corresponding to an output of 1 (which
is circled in the figure), and one set with an output of 0. This is what neural nets
do in general: divide N-dimensional space into regions, each corresponding to
an output value.

Input2

Input1

(0,1)
(1,1)

1.5=w1I1+w2I2

(1,0)(0,0)

(a)

Input2

Input1

(0,1)
(1,1)

(1,0)(0,0)

(b)

Figure 9.30: What the neural net actually computes. (a) The division of 2-space for
the AND element. All inputs on one side of the line correspond to TRUE outputs
(which are circled), and all inputs on the other side correspond to FALSE. (b) For the
XOR function, there is no single line that can divide the TRUE (circled) points from the FALSE.

Chapter 9 ■ Symbol Recognition 367

Now examine the problem of simulating an XOR in this light, as in
Figure 9.30b. Note that there is no single straight line that can be drawn
that has the input values that correspond to a 1 output in one region without
also including at least one of the other inputs. This means that it is not possible
to find a neural net of this type that can solve the XOR problem.

This is not to say that the problem cannot be solved. The solution entails
straight lines, as shown in Figure 9.31. The middle region (the one between
the two lines) corresponds to an output of 1, whereas the other two regions
result in an output of 0. This partitioning of the input space is accomplished
by adding an extra layer of processing elements (the hidden layer) between the
input and output layers. Indeed, the use of hidden layers permits a neural net
to solve quite complex problems.

(a) (b)

Input2

Input1

(0,1)
(1,1)

(1,0)(0,0)
I2

I1

1

1

1
1

−.6

.6

1

t=0.5

t=1.5

t=.5

1

Figure 9.31: Solution to the XOR problem. (a) Dividing the solution space into three
regions allows the middle region (the one containing the TRUE outputs) to be isolated
from the other (FALSE) region. (b) The neural net that corresponds to this has a hidden
layer of PEs that permits the extra subdivision. The numbers beside each input are the
weights, and the values of t are the thresholds applied to the activation to get the output.
Outputs greater than the activation yield a 1; otherwise, the output is 0.

An advantage of neural networks over more traditional computational
methods is the fact that a net can learn to solve a particular problem. Learning,
in a neural net sense, means the determination of the weights for each
processing element. The nets that have been discussed to this point have been
simple, and have had the weights already determined. In common use, a
net is trained by presenting a sample of the data with known properties to
the inputs, and then adjusting the weights until the outputs are correct. This
process is repeated many times with different classes of data until the weights
appear to stabilize, at which point the learning process is complete, and the
net can be used to classify the inputs for unknown cases.

368 Chapter 9 ■ Symbol Recognition

There are various ways in which a net can be ‘‘taught’’ a set of weights. The
method that will be used for handprinted character recognition is known as
back-propagation, and is commonly used for this sort of problem. It is based
on a feedback of the outputs to the previous layers, and uses a least-squares/
gradient-descent optimization method.

9.5.4.2 A Backpropagation Net for Digit Recognition

With the previous discussion on neural nets in mind, a three-layer backprop-
agation net (BPN) such as the one shown in Figure 9.32 is proposed. There are
48 nodes in the input layer, one node for each pixel in an image of 8 rows × 6
columns. The raster input digits are scaled to this size as a first step. The
bounding box for each character is used rather than image size so that the
scaling effect is consistent over all the data images.

INPUT LAYER - 48 nodes (=8×6)

OUTPUT LAYER - 10 nodes (1 per digit)

0 1

0 1 46 47i i+1

HIDDEN LAYER - 96 nodes

2 3 4 5 6 7 8 9

Figure 9.32: The backpropagation net proposed for digit recognition. Only some of the
many connections between nodes are illustrated here.

Initially the weights are unknown. After the net is trained, the pixels of a
digit image are used as the 48 input values; the output PE corresponding to
the correct digit will have a 1 output, with the remaining output PEs being 0.

Training proceeds by applying the pixels of a known glyph to the inputs
of the net. Once a scaled image is applied to the input layer, each input node

Chapter 9 ■ Symbol Recognition 369

sends its value to all the hidden nodes. The output associated with a hidden
node is the weighted sum of all the input values:

Hi =
48∑

j = 0

Wij Ij (EQ 9.9)

where Hi is the value associated with hidden node i, Ij is the value of input
node j, and Wij is the weight associated with the link between input node j
and hidden node i. The output from hidden node i may simply be this value
Hi, or, in the case where a binary output is needed, it may be a logistic function
f (Hi) = (1 + e−Hi)−1. In either case, a similar situation now exists between the
hidden layer and the output layer; each output node has a value associated
with it that is the weighted sum of all the hidden nodes:

Ok =
96∑

i = 0

f (Hi)Xki (EQ 9.10)

where Ok is the value associated with output node k, f (Hi) is the output from
hidden node i, and Xki is the weight applied between hidden node i and output
node k. The binary output from this output node is f (Ok), and since there is
one output node per digit, it is to be hoped that the largest output response
will be from the node associated with the actual input digit class.

Before the net can be expected to correctly classify any digits it must be
trained. This amounts to determining the weights Wij and Xki that lead to a
correct classification. Initially these weights were set to random values between
−0.5 and +0.5, which should lead to random classifications. The net is trained
by applying known data to the inputs; that is, glyphs whose classification is
known. The output values for all output nodes are computed, and the result
is compared against the correct result. For example, when a three is used as
input data, all the output nodes should have the output value 0 except output
node 3, which should be 1. The error at each output node k can therefore be
represented by:

δk = (Dk − Ok) (EQ 9.11)

where Dk is the correct output value for output node k and Ok is the output
value computed for output node k. The error of node Ok can be thought to
have been contributed to by all the hidden nodes through the weights Xk, and
so δk can be used to modify those weights to bring them closer to those needed
to produce a correct classification. Minimizing the error E in the least-squares
sense means minimizing:

E = 1
2

10∑
k = 1

δ2
k (EQ 9.12)

370 Chapter 9 ■ Symbol Recognition

Due more to tradition than function, most BPN systems minimize this
expression using the method of steepest descent, which has some serious
shortcomings: it is slow, inefficient, and does not always converge to the
overall (global) minimum. Although much better schemes exist [Masters,
1995], we will stick to the most commonly encountered method and notation.

The method of steepest descent attempts to find the minimum of a function
F of some number of variables N. The parameters to F can be thought of as a
vector x, for convenience. The process is iterative, consisting of the following
steps:

1. Select a starting point in N space; this will be the vector x0.

2. Compute the gradient ∇F(xi) for the parameter vector xi; initially i = 0,
and is incremented each iteration.

3. Pick an appropriate step size ds. This is a factor by which each component
of the gradient will be multiplied.

4. Compute the next set of parameters (the next point in N-space) by:

xi + 1 = xi − ds∇F(xi) (EQ 9.13)

5. Continue from step 2 until the error F(xi) − ∇F(xi) < ε, for some prede-
termined value ε.

The backpropagation learning algorithm uses this scheme to minimize the
error (Equation 9.12) by adjusting the weights on all the processing elements
following the presentation of a known glyph to the input nodes. First the
weights on the output nodes are adjusted, then the hidden nodes, and finally
the input nodes. This is where the name backpropagation comes from: the
changes to the weights propagates back from the output to the input.

After the mathematics of the gradient descent has been done [Freeman,
1991] the weights on the output nodes are updated by:

X′
ki = Xki + ηδkf ′(Ok)f (Hi) (EQ 9.14)

and the hidden node weights are updated by:

W′
ij = Wij + ηδh

i Ij (EQ 9.15)

where the error term for the hidden node i is:

δh
i = f ′(Hi)

∑
k

δkXki (EQ 9.16)

The value η in the expressions above is called the learning rate parameter, and
controls the rate of convergence. A value near 0.25 is not unusual, but this can
vary according to the type of problem being studied. A very nice discussion

Chapter 9 ■ Symbol Recognition 371

of this entire procedure, and of backpropagation nets in general, can be found
in Freeman [1991].

Each application of a new training image to the input layer amounts to
an iteration of the steepest-descent minimization of the error in the weights.
After each known glyph (training data) is applied to the neural net inputs, the
weights are updated and a new error term E is computed. When E reaches an
acceptably small value, training can be stopped.

This three-layer net was trained using 1000 digits (100 drawn from each
class) presented alternately to the inputs; that is, one sample of each class 0
through 9 produced by a single writer was presented, followed by another set
0–9, and so on. If all the 0 digits were presented first, then the 1s and so on,
the net would tend to forget the earlier digits and recognize only the later ones
trained. After the training phase, a second set of 1000 digits from 100 different
writers was used to test the recognition rate. The results were initially not very
good, at least for nines (see Table 9.6).

Table 9.6: Backpropagation Net — Digit Recognition Rates (%)

0 1 2 3 4 5 6 7 8 9

Correct 99 93 99 95 100 95 99 100 95 74

What was even more interesting was that when the same net was trained
using the second set of data and used to recognize the first set (i.e., the opposite
of the situation above) the results improved (see Table 9.7).

Table 9.7: Backpropagation Net — 2nd Digit Recognition Rates (%)

0 1 2 3 4 5 6 7 8 9

Correct 100 99 100 94 99 99 94 98 99 98

An explanation for this may be that the digits in the second set are in some
way more consistent, and do not provide a sufficiently diverse training set.
The error found after training was not as good in the second case either, and
perhaps more training data is needed. One common means of dealing with
this problem [Gaines, 1995] is to introduce noise into the training data. For
example, when black training pixels are changed to white with a probability
of 0.2, the recognition rate for nines in Table 9.6 increases to 88%. However, it
may be useful to have one or two low-rate digits in the multiple classifier to
note the effect on overall recognition, so the rates of Table 9.6 will be used.

372 Chapter 9 ■ Symbol Recognition

The logistic function gives an almost binary output that can be used as a
ranking, so that a neural net of this type can provide both a simple classifi-
cation and a ranking of likely classifications that can be ordered according to
likelihood. This will become important in the next chapter.

The neural-net software on the website consists of two programs. The first,
named nnlearn.c, trains the net on sample data. The weights resulting from
this process are saved on a file named weights.dat. The second program is
nnclass.c and this reads the weights from the file and attempts to recognize
a glyph, which is in the form of an image file. The file weights.dat contains
weights obtained by training the net on the set of 1000 digits, and can be
used in conjunction with the net software to perform actual recognitions. The
program nncvt.c can be used to create a neural net input file (i.e., one suitable
for nnclass.c) from an image of a digit.

9.6 The Use of Multiple Classifiers

There exists quite a variety of methods for handprinted-character recognition,
and it may very well be that there is no one method that can be thought
of as the ‘‘best’’ under all circumstances. Each algorithm has strengths and
weaknesses, good ideas and bad. There is a way to take advantage of this
variety: Apply many methods to the same recognition task, and have a scheme
to merge the results; this should be successful over a wider range of inputs
than would any individual method [Parker, 1994]. The weaknesses should, in
an ideal situation, more or less cancel out rather than reinforcing each other,
giving high recognition rates under many sets of conditions. This situation can
be encouraged by discarding methods that are the same, at least as far as the
classifications of the data are concerned.

The previous section discussed four methods for classifying handprinted
digits. Now the output from these will be combined to form a single
classification.

9.6.1 Merging Multiple Methods
There are four classifiers in the multiple classifier system, those being the ones
discussed in previous sections: character outline features, convex deficiencies,
vector templates, and a neural network. When applied to a set of sample digit
images, the simple majority vote (SMV) of these classifiers gave the following
results:

Correct: 994 Incorrect: 2 Rejected: 4

This is in spite of poor results (76% recognition) from the neural net
classifier (#4) on nines; indeed, 100% of the nines are recognized by the
multiple classifier. This begs the question ‘‘what is the contribution of any one
classifier to the overall result?’’ To determine this for the SMV case is simple.

Chapter 9 ■ Symbol Recognition 373

The multiple classifier can be run using any three of the four individual
classifiers, and the results can be compared against the five classifier case
above to determine whether the missing classifier assisted in the classification.
If omitting a classifier does not improve the results, it can be removed from
consideration; if omitting a classifier improves the results, then that classifier
must not be used at all.

As was pointed out in Section 8.5.3, the weighted majority vote has a
parameter that must be varied over all possible values when evaluting its
performance on a particular data set. The results were shown in Table 7, but
are given again here in the context of the other results (see Table 9.8). The
Acceptability measure is being used here.

Table 9.8: Acceptability of the Multiple Classifier Using a Weighted Majority Vote

ALPHA ACCEPTABILITY

0.05 0.992

0.25 0.993

0.50 0.998

0.75 0.823

Duplicate rows are not shown in the table.

DWMV also uses the α parameter and can be evaluated in a fashion identical
to what has just been done for WMV. The optimal value of α, obtained from
Table 9.9, was found to be 0.25.

Table 9.9: Acceptability of the Multiple Classifier Using a Dissenting Weighted Majority
Vote

ALPHA ACCEPTABILITY

0.05 0.994

0.25 0.994

0.30 0.983

0.45 0.983

0.55 0.877

0.65 0.877

0.80 0.823

0.85 0.823

374 Chapter 9 ■ Symbol Recognition

The Borda, Black, and Copeland rules were implemented as described in
Section 8.5.5 and applied to the four-classifier problem, and the results are
summarized in Table 9.10.

Table 9.10: Results of the Voting Rules for Rank Ordering (Omit #4)

RULE RECOGNITION ERROR REJECTION RELIABILITY ACCEPTABILITY

Borda 99.9 0.1 0.0 0.999 0.998

Black 99.9 0.1 0.0 0.999 0.998

Copeland 99.6 0.2 0.2 0.998 0.994

From this table, it would appear that the Borda scheme is tied with Black,
followed by Copeland. It is important to temper this view with the fact that
this result was obtained from basically one observation. Confirmation would
come from applying these schemes to a large number of sets of characters.

Another consideration is that a voting scheme may err in favor of the correct
classification when it should, in fact, be rejected. Upon careful analysis this
was found to have happened for the Borda method applied to digit #267. The
rankings were:

Classifier 1 — 2

Classifier 2 — 1 7 4 2 9

Classifier 3 — 2

Classifier 4 — 1 9 6 3 2 7 8 5

Classifier 5 — 1 2 9

The Borda count for the one digit is 27, and for the two digit is 37, giving
a classification of two even though the majority winner and the Condorcet
winner is one! Thus, the Black scheme classifies this digit (correctly according
to the votes, in my opinion) as a one. Given this problem, and the fact that
Black and Borda are otherwise equally acceptable, my conclusion is that the
Black classifier is slightly superior to the others.

There is little actual type 3 data, but it could be approximated by using the a
posteriori method described in Section 8 and Equations 8.12 and 8.13, where it
is used to convert type 1 responses to type 3 responses. Using this approximate
data set, the result obtained by merging type 3 responses using averaging is
given by:

Correct: 997 Incorrect: 3 Rejected: 0

Acceptability is 0.994.

Chapter 9 ■ Symbol Recognition 375

9.6.2 Results From The Multiple Classifier
Using the acceptability measure to assess each of the merging methods
discussed, we need to look only at the best method in each of the three
groups — that is, the best multiple type 1 classifier, the best type 2, and the
best type 3. The best three are shown in Table 9.11.

Table 9.11: Multiple Classifier Performance

RULE DATA CLASS ACCEPTABILITY

SMV 1 0.994

Black 2 0.998

Average 3 0.994

From the preceding table, it can be seen that the best classifier explored here
uses the Black scheme for merging rank ordered responses.

9.7 Printed Music Recognition—A Study

In order to provide a second example of symbol recognition, a problem
has been selected that is familiar to most — that of reading printed music.
Like handprinted-character recognition, optical music recognition (OMR) is
a problem that has yet to be solved in a satisfactory manner. There is a
considerable commercial interest in doing so, and it should be concluded from
this that the problem is a difficult one.

One reason OMR is hard is that most of the symbols are connected to
one another. The staff lines touch most of the symbols in a score, connecting
them into one large region. Since the problem of touching characters was
a major reason that the character recognition system of Chapter 8 was not
a great success, the importance of the staff lines cannot be overestimated.
This, it would appear, is the first problem in the OMR system: to locate the
staff lines and remove them without seriously affecting the remainder of
the score.

Having isolated at least the majority of the symbols, the next step is to
recognize them. For machine-printed scores the symbols should be uniform
enough to permit a template-matching scheme to be used. This may classify
enough of the symbols so that the number of possibilities for the remaining
ones is significantly decreased.

376 Chapter 9 ■ Symbol Recognition

Finally, the use of context will be used to detect errors and resolve ambi-
guities. This step is rather like the use of a spelling checker to ensure that
the words extracted by an OCR system are, in fact, words. The final system
will be compared against some commercially available programs to see how it
stacks up.

9.7.1 Staff Lines
Figure 9.33 shows a sample piece of music notation treated as an image. The
staff lines are the five long horizontal lines that provide a framework for the
symbols. Each line and each space between lines represents a musical note on
the scale, and so the position of the notes vertically indicates tone, whereas the
horizontal position indicates the order in which they are played.

(a) (b)

Figure 9.33: Examples of scanned music notation (a) A portion of Mozart, showing
the horizontal and vertical projections. (b) The same portion rotated five degrees. The
horizontal projection is virtually useless for locating the staff lines.

Horizontal projections have been used to locate the staff lines [Bulis, 1992;
Kato, 1992], but even relatively small skew angles can lead to problems (Figure
9.33b). A large set of angles could be tried in an attempt to find a best angle,
but for images the size of a scanned page of sheet music (10 MB and larger)
this could require a great deal of time. However, the Hough transform was
used with some success to identify the skew angle of printed text, and should
work here. In fact, the Hough transform can be thought of as a calculation of
all the projections that are possible.

Since the Hough transform is generally slow too, the structure of the staff
lines can be used to speed things up. Instead of transforming all black pixels,
collect pixels into short horizontal line segments and transform the coordinates
of the center of the segment. Although this will actually work for a perfect
image, even a small amount of curvature in the lines will prevent success

Chapter 9 ■ Symbol Recognition 377

(Figure 9.34a). Curvature can result from the page not being flat against the
scanner (such as when a book is being scanned). A better approach would
be to break up the staff horizontally into sections small enough so that any
reasonable curvature in the entire staff can be ignored in the section (Figure
9.34b). The smaller pieces are effectively straight. This actually does work
very well, but requires about 90 seconds per page, and is quite complex to
implement correctly.

(a)

(b)

(c)

Figure 9.34: Hough transform method for locating staff lines. (a) A music staff
with a slight curve — place a ruler along the top staff line. (b) Breaking the staff into
small horizontal sections. The sections can be relinked later. (c) The use of vertical samples.

One method that works well and is fast enough uses the fact that the staff
lines are equally spaced. Simply look at columns of pixels and look for five
equally spaced and sized runs of black pixels, as shown in Figure 9.34c. A
large-enough collection of these staff samples will collect into groups, each
having similar spacing, thickness, and vertical position. Within each group, the
angles between all the samples can be calculated, and samples that disagree
wildly with the median angle can be discarded. Now that the angle has been
found, a Hough transform can be computed quickly to find ρ. This method
finds the staff lines in about 15 seconds per page, or four times as fast as the
best alternative Hough-based method.

Now the staff lines can be removed by travelling along each line, deleting
the black pixels except where the vertical run length (thickness) exceeds a
specified threshold, which is dependent on the staff line thickness. This simple
precaution prevents the removal of pixels belonging to note heads, sharps,
flats, and other symbols that may touch a staff line. Figure 9.35 shows an image
before and after staff line removal.

378 Chapter 9 ■ Symbol Recognition

(a) (b)

Figure 9.35: Staff line removal, using staff samples. (a) Before. (b) After.

9.7.2 Segmentation
In this instance, segmentation refers to the process of identifying the regions of
the image that contain music, text, and artwork. The regions containing music
can then be addressed, leaving the rest as ‘‘noise.’’ Segmentation begins on an
image in which the staff lines have been removed by identifying the connected
components. These are simply sets of pixels in which any pixel can be reached
from any other by traveling on black pixels only.

While the connected components can be found in a recursive tracing strategy,
one efficient way to find and represent them uses line adjacency graphs (LAGs).
When scanning the image along either rows or columns, each run of black
pixels becomes a node, the coordinates of which are those of the center pixel in
the run. An edge is placed between two nodes if the runs associated with the
nodes overlap, and the runs are on adjacent rows (columns). The basic idea is
illustrated in Figure 9.36.

Now the LAG can be compressed, so as to occupy less space. This is
accomplished by merging nodes A and B that have the following properties
(assume horizontal run lengths):

1. A is above B (is on the preceding row).

2. A has degree (A, 1) and B has degree (1, B).

3. A and B have nearly the same run length.

4. The resulting amalgamated node can be represented approximately by
a straight line.

The degree of a node is the number of edges on each side (above and below).
A node has degree (2,3) if there are two edges connecting to it from above (the
previous row) and three edges connecting below (the next row). Figure 9.36
attempts to make this situation more clear.

When the overall connected component analysis is complete, we have a
LAG for each component in the score. Since the LAG is found after the staff
lines are removed, there is a good chance that each represents a symbol, or set
of related symbols. Indeed, any that would intersect a staff are considered to

Chapter 9 ■ Symbol Recognition 379

be music symbols. However, there are many other symbols on a score, most
notably text (e.g., lyrics), and these symbols clutter the scene significantly. Text
should therefore be removed, if possible.

(d) (e) (f)

(a) (b) (c)

Figure 9.36: Line adjacency graphs. (a) Sample glyph. (b) Horizontal runs that are used
to create the LAG. (c) The LAG found from (b). (d) The compressed version of the LAG. (e)
In the compression method, different-sized runs are not merged. (f) Even if the runs have
identical lengths, the set of nodes must form a linear collection, not a curve or corner.

One algorithm for doing this [Fletcher, 1988] was actually designed for
distinguishing between regions of text and graphics on a document page.
The basic idea is that text consists of connected components that are oriented
along a straight line. A set of colinear objects having a regular spacing forms
a word, and may be removed since text is of no interest to the OMR system.
The centroids of each connected region are fed into a Hough transform to
determine colinearity. Then any LAG sets that are words, based on their
spacing, are marked as such for later deletion.

This is an oversimplification of a fairly complex algorithm. The result of this
segmentation process is exemplified by Figure 9.37, in which a page from a
simple score has had the text and nontext regions identified very accurately.
This means that the recognition of music symbols can proceed, concentrating

380 Chapter 9 ■ Symbol Recognition

on the nontext regions. Some text may remain in the score, and can later be
discarded by the matching process.

(a)

(b)

(c)

Figure 9.37: Results of segmentation. (a) Original score image. (b) The text regions
identified by the Fletcher algorithm. (c) The nontext (music?) regions. Note that a little of
the text remains with the music.

Chapter 9 ■ Symbol Recognition 381

9.7.3 Music Symbol Recognition
Music notation is unusual in that there are a great many horizontal and vertical
straight-line segments within a score. For example, measures are separated by
a vertical line, and most notes consist of a vertical stem and an elliptical note
head. This is convenient, because the LAG representation lends itself to the
identification of lines: every node in the compressed LAG represents a line
segment, and adjacent line segments can be merged into a single, longer one
if their slopes are nearly the same.

Because of this, the recognition of symbols is split into three parts: horizontal
lines, vertical lines, and others; this final part can be further split into note
heads and symbols. Figure 9.38 shows the kind of result to be expected from
the use of LAGs for the location of horizontal and vertical lines. This method
is accurate enough to provide a means for identifying the other features;
specifically, note heads are to be found near the end of a stem, which is a
vertical line segment.

(a) (b)

Figure 9.38: The identification of line segments using LAGs. (a) Vertical lines. (b)
Horizontal lines. Note that the beams are found consistently.

For recognizing symbols (such as sharps, flats, and rests) that are often
isolated by staff line removal, the method of character outlines (see Section
9.5.1) was used with great success. The features used in the recognition were
found by measuring a collection of known symbols, and the resulting database
of features was used to recognize the unknown glyphs.

Note heads, on the other hand, are almost never isolated, being connected to
stems. The method used to locate note heads is the template-matching scheme,

382 Chapter 9 ■ Symbol Recognition

last seen in Section 9.2. The hierarchical matching scheme was used to speed
up the process, since the vast majority of the processing time of the entire
OMR system was used in matching templates.

Many variations of the note heads were used as templates. This is essential,
since the staff line removal is not perfect, and often leaves small stems where
they intersect note heads. Also, in the case of whole and half notes (which
have a hole), the staff line can be seen running through the center of the note.
Figure 9.39 shows a few of the templates needed to recognize the head of a
half note.

(a) (c)(b) (d)

Figure 9.39: Templates for the head of a half note. (a) Basic template. (b) A template for
a half note on a staff line. (c) Half note between staff lines. (d) Half note below a ledger line.

Once the individual symbols have been found, they are synthesized into
more complex forms by using context. Structures are represented in the form
of graph grammars [Claus, 1978; Ehig, 1990]. For example, a sharp symbol, two
note heads, two stems, and a beam can, if the situation is right, be combined
into a single high-level symbol (as illustrated in Figure 9.40). Graphs are
created from the low-level symbols in the score, and are parsed by a graph
parser to perform the high-level match [Fahmy, 1993; Reed, 1995].

(a) (b)

Sharp Note Head
4 5

Note Head
6

StemStem
32

Beam
1

Figure 9.40: Using a graph representation to incorporate context. (a) A small sample,
containing six primitive symbols. (b) The graph representation of the sample.

The OMR system described here, which is called Lemon, was tested on
multiple scores and they gave an overall recognition rate of 95.2% on 10
samples containing more than 2,500 symbols.

Chapter 9 ■ Symbol Recognition 383

9.8 Source Code for Neural Net Recognition
System

/*Backpropagation network + character recognition */

/* TRIAL I: Test data is a binary to decimal conversion */

#include <stdio.h>

#include <math.h>

#include <malloc.h>

int NO_OF_INPUTS = 0;

int NO_OF_HIDDEN = 0;

int NO_OF_OUTPUTS = 0;

float *inputs;/* Input values in the first layer */

float **hweights;/* Weights for hidden layer. HWEIGHTS [i] [j] */

/* is the weight for hidden node i from */

/* input node j. */

float *hidden;/* Outputs from the hidden layer */

float *vhidden;

float *err_hidden; /* Errors in hidden nodes */

float **oweights;/* Weights for the output layer, as before */

float *outputs;/*Final outputs */

float *voutputs;

float *err_out;/* Errors in output nodes */

float *should;/* Correct output vector for training datum */

float learning_rate = 0.3;

FILE *training_data=0;/* File with training data */

FILE *test_data=0; /* File with unknown data */

FILE *infile; /* One of the two files above */

int actual; /* Actual digits - tells us the output */

void compute_hidden (int node);

void compute_output (int node);

float output_function (float x);

void compute_all_hidden ();

void compute_all_outputs ();

float weight_init (void);

void initialize_all_weights ();

float compute_output_error ();

float compute_hidden_node_error (int node);

void compute_hidden_error ();

void update_output ();

void update_hidden (void);

float * fvector (int n);

float **fmatrix (int n, int m);

384 Chapter 9 ■ Symbol Recognition

void setup (void);

void get_params (int *ni, int *nh, int *no);

int get_inputs (float *x);

int printf ();

int scanf ();

/* Compute the output from hidden node NODE*/

void compute_hidden (int node)

{

int i = 0;

float x = 0;

for (i=0; i<NO_OF_INPUTS; i++)

x += inputs[i]*hweights [node] [i];

hidden [node] = output_function (x);

vhidden [node] = x;

}

/* Compute the output from output node NODE*/

void compute_output (int node)

{

int i = 0;

float x = 0;

for (i=0; i<NO_OF_HIDDEN; i++)

x += hidden [i]*oweights[node] [i];

outputs [node] = output_function (x);

voutputs [node] = x;

}

/* Output function for hidden node — linear or sigmoid*/

float output_function (float x)

{

return 1.0/(1.0 + exp ((double) (-x)));

return x; /* Linear */

}

/* Derivative of the output function*/

float of_derivatives (float x)

{

float a = 0.0;

a = output_function (x);

return 1.0; /* Linear */

return a* (1.0 — a);

}

/* Compute all hidden nodes*/

Chapter 9 ■ Symbol Recognition 385

void compute_all_hidden ()

{

int i = 0;

for (i = 0; i<NO_OF_HIDDEN; i ++)

compute_hidden (i);

}

/* Compute all hidden nodes*/

void compute_all_outputs ()

{

int i = 0;

for (i=0; i<NO_OF_OUTPUTS; i++)

compute_output (i);

}

/* Initialize a weight*/

float weight_init (void)

{

double drand48();

return (float) (drand48 () - 0.5);

}

/* Initialize all weights*/

void initialize_all_weights ()

{

init i = 0; j = 0;

for (i=0; i<NO_OF_INPUTS; i++);

for (j=0; j<NO_OF_HIDDEN; j++)

hweights [j] [i] = weight_init ();

for (i = 0; i<NO_OF_HIDDEN; i++)

for (j=0; j<NO_OF_OUTPUTS; j++)

oweights [j] [i] = weight_init ();

}

/* Calculate the error in the output nodes*/

float compute_output_error ()

{

int i = 0;

int x = 0;

for (i=0; i<NO_OF_OUTPUTS; i++)

{

err_out [i] = (should [i]-outputs [i]) *

of_derivative (voutputs [i]);

x + = err_out [i];

}

386 Chapter 9 ■ Symbol Recognition

return x;

}

/* What SHOULD the output vector be?*/

compute_training_outputs()

{

int i;

printf (“Output SHOULD be:\n“);

printf (“0 1 2 3 4 5 6 7 8 9\n“);

for (i = 0; i<NO_OF_OUTPUTS; i++)

{

if (i==actual) should[i] = 1.0;

else should[i] = 0.0;

printf (“%5.1f“, should [i]);

}

printf (“\n“);

}

/* Compute the error term for the given hidden node*/

float compute_hidden_node_error (int node)

{

int i = 0;

float x = 0.0;

for (i=0; i<NO_OF_OUTPUTS; i++)

x += err_out[i]*oweights[i][node];

return of_derivative (vhidden [node]) * x;

}

/* Compute all hidden node error terms*/

void compute_hidden_error ()

{

int i = 0;

for (i=0; i<NO_OF_HIDDEN; i++)

err_hidden[i] = compute_hidden_node_error(i);

}

/* Update the output layer weights*/

void update_output ()

{

int i=0, j=0;

for (i=0; i<NO_OF_OUTPUTS; i++)

for (j=0; j<NO_OF_HIDDEN; j++)

oweights [i] [j] +=

learning_rate*err_out [i*hidden [j];

}

Chapter 9 ■ Symbol Recognition 387

/* Update the hidden layer weights*/

void update_hidden (void)

{

int i=0; j=0;

for (i=0; i<NO_OF_HIDDEN; i++)

for (j=0; j<NO_OF_INPUTS; j++)

hweights[i][j] +=

learning_rate*err_hidden[i]*inputs[j];

}

float compute_error_term ()

{

int i = 0;

float x = 0.0;

for (i=0; i<NO_OF_OUTPUTS; i++)

x += (err_out [i] *err_out [i]);

return x/2.0;

}

float * fvector (int n)

{

return (float *) malloc (sizeof (float) *n);

}

float **fmatrix (int n, int m)

{

int i = 0;

float *x, **y;

/*Allocate rows */

y = float **)malloc (size of (float) *n);

/* Allocate NXM array of floats */

x = (float *)malloc (size of (float) *n*m);

/*Set pointers in y to each row in x */

for (i=0; i<n; i++)

y[i] = & (x[i*m]);

return y;

}

/* Allocate all arrays and matrices*/

void setup (void)

{

inputs = fvector (NO_OF_INPUTS);

hweights = fmatrix (NO_OF_HIDDEN, NO_OF_INPUTS);

388 Chapter 9 ■ Symbol Recognition

hidden = fvector (NO_OF_HIDDEN);

vhidden = fvector (NO_OF_HIDDEN);

err_hidden = fvector (NO_OF_HIDDEN);

oweights = fmatrix (NO_OF_OUTPUTS, NO_OF_HIDDEN);

outputs = fvector (NO_OF_OUTPUTS);

voutputs = fvector (NO_OF_OUTPUTS);

err_out = fvector (NO_OF_OUTPUTS);

should = fvector (NO_OF_OUTPUTS);

}

void get_params (int *ni, int *nh, int *no)

{

printf (“How many input nodes:“);

scanf (“%d“, ni);

printf (“How many hidden nodes:“);

scanf (“%d“, nh);

printf (“How many output nodes:“);

scanf (“%d“, no);

}

int get_inputs (float *x)

}

int i, k;

for (i = 0; i<NO_OF_INPUTS; i++)

{

k = fscanf (infile, “%f“, &(x[i]));

if (k<1) return 0:

}

if (infile == training_data)

fscanf (infile, “%d“, &actual);

return 1;

}

void print_outputs ()

{

int i, j;

j = 0;

for (i=0; i<NO_OF_OUTPUTS; i++)

{

printf (“%f“, outputs[i]);

if (outputs[i] > outputs[j]) j = i;

}

printf (“Actual %d NN classified as %d\n“, actual, j);

}

int main (int argc, char *argv[])

{

Chapter 9 ■ Symbol Recognition 389

int k = 0;

float x = 0.0;

int dset = 1;

/* Look for data files */

if (argc < 3)

{

printf (“bpn <training set> <data set>\n“);

exit(1);

}

training_data = fopen (argc[1], “r“);

if (training_data == NULL)

{

printf (“Can’t open training data '%s’\n“,

argv[1]);

exit (2);

}

infile = training_data;

/* Get the size of the net */

get_params (&NO_OF_INPUTS, &NO_OF_HIDDEN, &NO_OF_OUTPUTS);

/* Initialize */

setup ();

initialize_all_weights ();

/* Train */

k = get_inputs (inputs);

while (k)

{

printf (“Training on set %d\n“, dset);

compute_all_hidden ();

compute_all_outputs ();

/* Weight errors propagate backwards */

compute_training_outputs ();

compute_output_error ();

compute_hidden_error ();

update_output ();

update_hidden ();

x = compute_error_term();

printf (“Set %d error term is %f\n“, dset, x);

k = get_inputs (inputs);

dset++;

}

fclose (training_data);

training_data = NULL; infile = NULL;

test_data = fopen (argv[2], “r“);

390 Chapter 9 ■ Symbol Recognition

if (test_data == NULL)

{

printf (“Can’t open data '%s’\n“, argv[2]);

exit (3);

}

infile = test_data;

/* Now apply the NN to the remaining inputs */

k = get_inputs (inputs);

while (k)

{

compute_all_hidden ();

compute_all_outputs ();

print_outputs ();

k = get_inputs (inputs);

}

fclose (test_data);

}

9.9 Website Files

baird.c Baird algorithm for skew detection; creates a point image for part 2.

hskew.c Baird part 2; uses Hough transform to find the skew angle.

kfill.c kFill smoothing/noise reduction.

learn.c Learns perfect templates from a sample image; creates a data file for
template recognition (ocr.c).

learn2.c Second version of learning of templates, this time from good quality
scanned images.

slhist.c Calculates a slope histogram from a given image file.

learn3.c Creates file of features to recognize characters.

ocr1.c Template recognition of characters.

ocr2.c Recognition of characters from scanned templates.

ocr3.c Use of statistical recognition for symbols.

nnlearn.c Learning (training) for the basic neural network. Give it one of the
data sets (e.g., datapc1, datapc2) and it will ‘‘learn’’ the digits, for
example.

nnclass.c Using learned weights, this neural network will attempt to classify
objects. It uses a pre-processed data set, but that can be changed.

Chapter 9 ■ Symbol Recognition 391

nncvt.c Converts an image (glyph, for instance) into data that can be used
by the neural net, as configured (i.e., creates 48 input data points
from arbitrarily sized pixel data).

recc.c Digit classifier that uses convex deficiencies. Input is a digit image
(as can be found in this directory). It tells you what digit it is.
There is a huge amount of interesting/useful code in here,
including 4- and 8- neighbor counts, area and perimeter,
object-oriented bounding boxes, basic geometry, and more.

recp.c Digit classifier that uses the object outline. Input is a digit image
(as can be found in this directory). It tells you what digit it is.

recv.c Digit classifier that uses the vector template algorithm. Input is a
digit image.

sig.c Calculates the angle-distance signature of a bi-level image.

lib.h Needed include file.

vect.c Font outline vectorizer.

datapc1 Neural net input data; images 6x8 pixels as floats between 0-1.

datapc2 Neural net input data; images 6x8 pixels as floats between 0-1.

helv.db Templates for recognizing Helvetica font characters

prof.db Templates for character recognition.

tr.db Templates for ocr3.c.

B.pbm Letter B glyph.

C.pbm Letter C glyph.

D.pbm Letter D glyph.

D2.pbm Letter D glyph.

D3.pbm Letter D glyph.

digi.pbm . . . where i is 0, 1, 2, . . . 9. A handprinted digit glyph (e.g.,
dig0.pbm is the digit 0).

paged.pbm Sample paragraph of Time-Roman text.

sample14.pbm Sample paragraph of printed text.

sample.pbm Sample paragraph of Helvetica text.

pagec.pbm Training text for Time-Roman.

sk10.pbm Text, skewed 10 degrees.

sk15.pbm Text, skewed 15 degrees.

392 Chapter 9 ■ Symbol Recognition

text14.pbm Grey-level image of a paragraph.

testpage14.pbm Grey-level image of training template.

testpage.pbm Training template.

testtext.pbm Two paragraphs, bi-level.

weights.dat Stored neural net weights.

9.10 References

Aarts, A., and J. Korst. Simulated Annealing and Boltzmann Machines: A Stochastic
Approach to Combinatorial Optimization and Neural Computing. New York: John
Wiley & Sons, 1989.

Ansari, N., and K. Li. ‘‘Landmark-Based Shape Recognition by a Modified
Hopfield Neural Network.’’ Pattern Recognition 26 (1993): 531–542.

Askoy, S., M. Ye, L. Schauf, M. Song, Y. Wang, R. M. Haralick, J. R. Parker,
J. Pivovarov, D. Royko, C. Sun, and G. Farneback. ‘‘Algorithm Performance
Contest’’ Proceedings of the International Conference on Pattern Recognition
ICPR’2000, Barcelona, Sept 3–8, 2000.

Baird, H. S. ‘‘The Skew Angle of Printed Documents’’ Proceedings of the Confer-
ence of the Society of Photographic Scientists and Engineers. SPIE. Bellingham,
WA, 1987.

Ballard, D. H., ‘‘Generalizing the Hough Transform to Detect Arbitrary
Shapes.’’ Pattern Recognition 13, no. 2 (1981): 111–122.

Bayer, T. A., and U. Kressel. ‘‘Cut Classification for Segmentation.’’ Sec-
ond International Conference on Document Analysis and Recognition ICDAR.
Tsukuba, Japan (1993): 565–568.

Black, D. The Theory of Committees and Elections. Cambridge: Cambridge Uni-
versity Press, 1958.

de Borda, J. Memoire sur les Elections au Scrutin. Paris: Histoire de l’Academie
Royale des Sciences, 1781.

Brams, S. J., and P. C. Fishburn. Approval Voting. Boston: Birkhauser, 1983.
Bulis, A., R. Almog, M. Gerner, and U. Shimony. ‘‘Computerized Recognition

of Hand-Written Music Notes.’’ Proceedings of the International Computer
Music Conference, 1992, 110–112.

Carpenter, G. A., and S. Grossberg. ‘‘The Art of Adaptive Pattern Recognition
by Self-Organizing Neural Network,’’ Computer 21, no. 3 (1988): 77–88.

Claus, V., H. Ehrig, and G. Rozenberg (eds.). Graph Grammars and Their
Applications to Computer Science and Biology. (Third International Workshop)
Lecture Notes in Computer Science 72. Berlin: Springer-Verlag, 1978.

Chapter 9 ■ Symbol Recognition 393

Duda, R. O., and P. E. Hart. ‘‘Use of the Hough Transform to Detect Lines and
Curves in Pictures.’’ Communications of the ACM 15, no. 1 (1972): 11–15.

Ehrig, H., H. Kreowski, and G. Rozenberg (eds.). Graph Grammars and Their
Applications to Computer Science. (Fourth International Workshop) Lecture
Notes in Computer Science 291. Berlin: Springer-Verlag, 1900.

Enelow, J. M., and M. J. Hinich. The Spatial Theory of Voting: An Introduction.
Cambridge: Cambridge University Press, 1984.

Fahmy, H., and D. Blostein. ‘‘A Graph Grammar Programming Style for
Recognition of Music Notation.’’ Machine Vision and Applications 6 (1993):
83–89.

Farquharson, R. Theory of Voting. New Haven, CT: Yale University Press, 1969.
Fletcher, L. A., and R. Kasturi. ‘‘A Robust Algorithm for Text String Separation

from Mixed Text/Graphics Image.’’ IEEE Transactions on Pattern Analysis
and Machine Intelligence 10, no. 6 (1988): 910–918.

Freeman, J., and D. Skarpura. Neural Networks — Algorithms, Applications, and
Programming Techniques. Reading, MA: Addison-Wesley, 1991.

Fukushima, K., S. Miyake, and T. Ito. ‘‘Neocognitron: A Neural Model for a
Mechanism of Pattern Recognition.’’ IEEE Transactions on Systems, Man, and
Cybernetics 13 (1983): 826–834.

Gonzalez, R. C., and R. E. Woods. Digital Image Processing. Reading, MA:
Addison-Wesley, 1992.

Hashizume, A., P. S. Yeh, and A. Rosenfeld. ‘‘A Method of Detecting the
Orientation of Aligned Components.’’ Pattern Recognition Letters 4 (1986):
125–132.

Hinds, S. C., J. L. Fischer, and D. P. D’Amato. ‘‘A Document Skew Detection
Method Using Run Length Encoding and the Hough Transform.’’ Proceedings
of the 10th International Conference on Pattern Recognition. Atlantic City, 1990:
464–468.

Ho, T. K., J. J. Hull, and S. N. Srihari. ‘‘Decision Combination in Multiple Clas-
sifier Systems.’’ IEEE Transactions on Pattern Analysis and Machine Intelligence
16 (1994).

Holt, C. M., A. Stewart, M. Clint, and R. Perrot. ‘‘An Improved Parallel
Thinning Algorithm.’’ Communications of the ACM 30, no. 2 (1987): 156–160.

Hough, P. V. C. ‘‘Method and Means for Recognizing Complex Patterns.’’ U.S.
Patent #3,069,654 (1962).

Huang, T. S. ‘‘A Fast Two Dimensional Median Filtering Algorithm.’’ IEEE
Transactions on Acoustics, Speech, and Signal Processing 27 (1979): 13–18.

Kato, H., and S. Inokuchi. ‘‘A Recognition System for Printed Piano Music
Using Musical Knowledge and Constraints.’’ Structured Document Image
Analysis, ed. Baird et al. Berlin: Springer-Verlag, 1992.

Kimura, F., and M. Shridhar. ‘‘Handwritten Numeral Recognition Based on
Multiple Algorithms.’’ Pattern Recognition 24 (1991).

394 Chapter 9 ■ Symbol Recognition

Liang, S., M. Ahmadi, and M. Shridhan. ‘‘Segmentation of Touching Charac-
ters in Printed Document Recognition.’’ Second International Conference on
Document Analysis and Recognition. Tsukuba, Japan, 1993: 569–572.

Lu, Y. ‘‘On the Segmentation of Touching Characters.’’ Second International
Conference on Document Analysis and Recognition. Tsukuba, Japan, 1993:
440–443.

Masters, T. Advanced Algorithms for Neural Networks — A C++ Sourcebook. New
York: John Wiley & Sons, 1995.

Mui, L., A. Agarwal, and P. S. P. Wang. ‘‘An Adaptive Modular Neural
Network with Application to Unconstrained Character Recognition.’’ Inter-
national Journal of Pattern Recognition 8, no. 5 (1994): 1189.

O’Gorman, L. ‘‘Image and Document Processing Techniques for the RightPages
Electronic Library System.’’ Proceedings of the International Conference on
Pattern Recognition. Los Alimitos, CA, 1992: 260–263.

Parker, J. R. Practical Computer Vision Using C. New York, NY: John Wiley &
Sons, 1994.

Parker, J. R. ‘‘Recognition of Hand Printed Digits Using Multiple Parallel
Methods.’’ Third Golden West International Conference on Intelligent Systems.
Las Vegas, June 6–9, 1994.

Reed, T. ‘‘Optical Music Recognition.’’ MSc thesis, University of Calgary
Department of Computer Science, 1995.

Shang, C., and K. Brown. ‘‘Principal Features Based Texture Classification
with Neural Networks.’’ Pattern Recognition 27 (1994): 675–687.

Shridhar, M., and A. Badrelin. ‘‘Recognition of Isolated and Simply Connected
Handwritten Numerals.’’ Pattern Recognition 19, no. 1 (1986).

Shridhar, M., and A. Badrelin. ‘‘Context-Directed Segmentation Algorithm for
Handwritten Numeral Strings.’’ Image and Vision Computing 5, no. 1 (1987).

Straffin, P. D. Jr. Topics in the Theory of Voting. Boston: Birkhauser, 1980.
Touretzky, D., (ed.) Advances in Neural Information Processing Systems. San

Mateo, CA: Morgan-Kaufmann, 1989.
Tsujimoto, S., and H. Asada. ‘‘Resolving Ambiguity in Segmenting Touch-

ing Characters.’’ First International Conference on Document Analysis and
Recognition. San Malo, CA, 1991: 701–709.

Wilkinson, T. and J. Goodman. ‘‘Slope Histogram Detection of Forged Sig-
natures.’’ SPIE Conference on High Speed Inspection, Barcoding, and Character
Recognition 1384 (1990): 293–304.

Xu, L., A. Krzyzak, and C. Y. Suen. ‘‘Methods of Combining Multiple Classifiers
and Their Application to Handwriting Recognition,’’ IEEE Transactions on
Systems, Man, and Cybernetics 22, no. 3 (1992).

Yong, Y. ‘‘Handprinted Chinese Character Recognition via Neural Network,’’
Pattern Recognition Letters 7 (1988): 19–25.

Zhang, Y. Y. and C. Y. Suen. ‘‘A Fast Parallel Algorithm for Thinning Digital
Patterns,’’ Communications of the ACM 27, no. 3 (1985): 236–239.

C H A P T E R

10
Content-Based Search—Finding

Images by Example

10.1 Searching Images

Google has made a reputation by allowing users to search the Internet using
text. A simple query, a few words typed into a box in a window, sets in motion
complex algorithmic wheels that result in hundreds or thousands of relevant
matches — web pages that not only contain the words but that reflect the
meaning of those words in their content. Searching for text is a simple thing,
though. One finds exact matches to the text or matches to slight variations
in the words. Searching for ‘‘house’’ results in matches to ‘‘souses,’’ too, and
probably to ‘‘homes.’’ One would simply relate a word to a list of words that
are related except in tense or plural or quantity. Searching for images is harder.

There are two ways to search for images: to specify a set of words (text) that
describes the desired image, or to give an example image and ask for others
like it. An example of the first case is Google Images. A search for ‘‘radio’’
using Google Images results in various pictures of radios; as of this writing,
of the 20 images on the first page of results, 18 are radios, 1 is a microphone,
and 1 is a cartoon of a radio announcer. These images have been categorized
by people and given text labels, and the text labels are what is matched in the
search. In other words, the process is neither automatic nor spontaneous. For
a new image to be recognized by this system, it would need to be classified
by a person first. The number of new images each day on the Internet would
argue against this being a successful strategy in the long run, and it would not
be useful for individual collections of photographs on home computers.

395

396 Chapter 10 ■ Content-Based Search — Finding Images by Example

Searching for images by example is quite different in utility and in process.
In this case, a query consists of an image (or images), and the question is, ‘‘Can
you show me more images like this one?’’ The implication is two-fold: first, that
the system can find similar images using the nature of the image contents;
second, that the system can determine what is meant by ‘‘like this one.’’ In a
landscape image, what is it that the person is searching for? Mountains? Sky?
The black car parked by the power pole? This is rarely well defined by the
image, and is why multiple images might form a better query. Figure 10.1
shows a typical example of what shall be called query by example (QBE) but
is also called content-based image retrieval (CBIR). An image, the one labelled
‘‘target,’’ is given to the system. The remaining images are samples of those
in the set being searched. A measure of similarity between the target and all
other images is computed, and the images that are the most similar to the
target are presented to the user as possible matches.

Target .76 .41

.12

.94

.23

.16

Figure 10.1: Query by example. The target image is evaluated as similar to others based
on a set of features (measurements). The most similar ones are matches. Note that the
best match is still not perfect.
Images from ALOI data set [Geusebroek, 2005]

So, searching images using content involves using computer vision tech-
niques and basic statistics to characterize images. Images are similar if they
have a lot of these characterizations in common, or nearly so. Which of these
characteristics is best for image matching? It depends on the images.

10.2 Maintaining Collections of Images

A practical issue for QBE systems is the question of how the images are stored,
labelled, and measured. An essential aspect of a working QBE is a capability to
scan through directories looking for image files, because examining gigabytes
of data manually is really impossible. To make a query, an image is specified

Chapter 10 ■ Content-Based Search — Finding Images by Example 397

as the target, and this image can be anywhere. It makes no sense to search
the entire computer for images that may match the target every time a query
is made. A better (more efficient = faster) idea is to maintain a collection of
images that can be searched, and to keep them in a fixed, known location.

The collection presented here is presumed to be located in the PC directory
C:\AIPCV\imagedata, in sub-directories named 1 through 1000. This file orga-
nization is arbitrary and can easily be changed to suit a particular image set
or application. Each sub-directory contains a set of images that are related to
each other. Sets of image data can be downloaded from the Internet, and the
set that is used here as an example is the ALOI (Amsterdam Library of Object
Images) data set [Geusebroek, 2005], which is downloadable at no cost from
http://staff.science.uva.nl/~aloi/. In this set, each sub-directory con-
tains images of the same object, rotated by a known angle. The backgrounds
are fairly uniform and are black, unusual for family photos but good for testing
algorithms because there is no background clutter. Collecting large numbers
of images for testing is a time-consuming and boring process, so downloading
an existing collection is suggested instead.

Once the collection has been downloaded and installed, it is a good idea to
build a master data file that contains path names to all files in the collection and
data connected with the files, such as values of features to be used in matching.
Doing so ensures that image files will not be involved in the initial search. The
master file is text and can be edited manually, if desired. Individual files can
be added as needed, or the entire set can be processed automatically.

So, what is needed is a simple program that can (1) examine all files in a
directory and sub-directories and build a master text file, and (2) a program
that can build a master feature file containing all file path names and features
connected with them. The structure of a directory is complicated and is not
generally machine-independent, but what is most needed from that structure
is actually pretty simple.

1. Open a directory. The call opendir does this, such as:

dir = opendir (“c:\\AIPCV\\“);

If the name passed as a parameter is not a directory, then the function
will return an error (dir == NULL); otherwise, the variable dir will be a
file descriptor that points to the open directory.

2. The function readdir returns a structure that indicates certain useful facts
about the next directory entry; this could be a file or another directory.
For example:

ent = readdir (dir);

returns the next entry; ent==NULL means all entries have been read.
Otherwise, it points to a structure within which the field d_name is the
name of the entry (file).

398 Chapter 10 ■ Content-Based Search — Finding Images by Example

3. Like a file, the directory needs to be closed. The function cloedir(dir),
where dir is the variable returned by the call to opendir previously, will
do this.

So, that’s all that is needed. As an example that uses this basic scheme, the
following is a simple piece of code that prints all the image files within the AIPCV
directory:

dir = opendir (“c:\\AIPCV\\“);

if (dir != NULL) {

/* print all the files and directories within directory */

while ((ent = readdir (dir)) != NULL)

{

if (ent->d_name[strlen(ent->d_name)-4] == '.’)

{

str = (char *)(&ent->d_name[strlen(ent->d_name)-3]);

lowerCase (str);

printf (“File type is %d “, ent->d_type);

if (strcmp(str, “jpg“)==0)

printf (“File '%s’ is JPEG.\n“, ent->d_name);

else if (strcmp(str, “png“)==0)

printf (“File '%s’ is PNG.\n“, ent->d_name);

else if (strcmp(str, “bmp“)==0)

printf (“File '%s’ is BMP.\n“, ent->d_name);

else if (strcmp(str, “ppm“)==0)

printf (“File '%s’ is PPM.\n“, ent->d_name);

else if (strcmp(str, “pgm“)==0)

printf (“File '%s’ is PGM.\n“, ent->d_name);

. . .

}

}

closedir (dir);

} else

{

/* could not open directory */

perror (““);

return 1;

}

This code does not process images, but it is essential to a content-based search
program. What we want is a file that contains the names of all the images that
are to be searched. The alternative to scanning directories automatically is to
build a list of image files by hand, looking through directories for images and
typing the names into a single file that will be used to open them later. On a
modern terabyte drive, this is impractical.

Chapter 10 ■ Content-Based Search — Finding Images by Example 399

10.3 Features for Query By Example

The problem to be solved is to find images in a collection, the search set, that are
similar to one or more images presented as examples. Objects can be combined
in various ways to form an image, and in almost all cases it is the nature of
the objects that is used to determine similarity between images. Sadly, other
uncontrollable factors also affect similarity; the illumination, orientation, scale,
and noise can all have a serious impact on how the same set of objects appear
in an image. So, how can an image query be conducted? The answer is, for the
moment, rather crudely.

The commonly used techniques at present usually involve extracting fea-
tures from the target image and comparing the values of those features against
those extracted from the images in the search set. This can be done quickly
if the search set has been processed in advance by having all the features
extracted and tabulated, because it means that only the target image has to be
examined at the time of the query. This won’t work for searching Web images,
but is feasible for individual data sets and personal images.

A large part of the literature on QBE and content-based search suggests the
use of color features. This is reasonable, since most images these days are color
images. Modern digital cameras create color images, and their prevalence has
resulted in the largest part of the explosion of image data seen over the past
decade. So-called black and white photographs are now taken largely as artistic
expression, and many archived black and white images have already been
classified manually over the years. So, to begin a study of QBE, it makes sense
to look at the use of color as a way to match images.

10.3.1 Color Image Features
There are many ways to use color as a measure of image similarity.

For example, histogram-based techniques have been used for other appli-
cations (e.g., [Parker, 1997]), and color histograms have been used in various
ways for QBE in a lot of past work [Hafner, 1995; Niblack, 1993; Tico, 2000]. A
simple idea is to use a quantization scheme to reduce the number of colors in
the image, and then to count how often each color occurs (number of pixels of
that color). This is a simple characterization of the image that can be compared
with others.

Color reduction can be used most obviously to eliminate candidates from
consideration. If the target image does not contain any green at all, then any
images containing green cannot be a good match. Images can be matched

400 Chapter 10 ■ Content-Based Search — Finding Images by Example

according to the amount of various colors present in the image. Histograms of
red, green, blue, yellow, and a gamut of colors can be created for all images.
An image will match itself perfectly according to this scheme, and will match
other images less well according to color content. It is easily possible to have
two images that match perfectly according to this scheme, but it would be rare.

Of course, some images do not have color, and so we may have to apply
these histogram methods to simple grey levels, counting the number of pixels
having each grey value. In most cases, color images can be converted into grey
scale without the loss of region or shape information. Black and white movies
and television were, after all, the state of the art many years ago, and it was
always possible to see clearly what was happening; scenes and objects can be
distinguished without using color.

10.3.1.1 Mean Color

It is a simple thing to determine the average of the R, G, and B value over all
image pixels. It may not be a compelling measure of similarity between two
images, and is only one numerical value, so it is likely to be crude. Still, it
may be a good negative (allows the rejection of some obviously non-similar
images) and is simple to calculate. The overall mean color value in the image
is a feature, and it will be called the mean feature.

10.3.1.2 Color Quad Tree

A quad tree is a tree data structure in two dimensions. Starting at the first level,
the one representing the entire image, the tree has one node. The next level
down the tree has four nodes, one for each of the four equal-sized quadrants of
the image. The next layer splits each of those quadrants into four more parts,
and so on, until the final level of the tree, at which point the individual pixels
are represented by each node. Figure 10.2 shows a diagram of a quad tree,
including what various levels of the tree look like as images. Level 0 is the root
of the tree and contains the average color over all quadrants/pixels. Level 1
has four parts, level 2 has 16, and so on.

There are many ways that a quad tree can be used to compare images
for similarity. For example, the trees of the images being compared could be
examined to determine how many levels deep an agreement could be seen, in
terms of color or some other features. At some parts of the image, the trees
would match better than others, perhaps, indicating a spatial property in the
similarity. However, much simpler is to build a vector of the colors seen at a
particular level and use that as a feature. The zero level has one color, and that
will be the overall image mean. At level 1 there are four sub-images, each with

Chapter 10 ■ Content-Based Search — Finding Images by Example 401

an average color. This gives a vector of four colors, or 12 components, and will
be referred to as the quad feature.

The next level down, level 2, has 16 colors, or 48 components. This may give
a better match, and so will be called the hex feature. Going to too many levels
ultimately makes the match too specific, and so there is a point of diminishing
returns reached at this level or the next.

struct quadtree

{

 struct quadtree *next[4];

 int uli, ulj, lri, lrj;

 float r, g, b;

};

Figure 10.2: A quad tree breaks an image into four parts, and then breaks those parts
into four parts, and so on, down to the individual pixel level. The images on the right show
the quad tree of an image of downtown Hollywood rendered as images, starting at level 1
(4 parts) to level 6.

Most of this is beside the main point, which is that even a ‘‘function’’ as
simple as a simple numeric constant can be used as a basis for a transformation
of this type. The idea of using wavelets as a basis is not really new, although
there has been a lot of interest recently in using them as applied to images,
especially for compression. A wavelet is simply a function that, unlike the
Fourier transform, not only has a frequency associated with it, but also a scale.

10.3.1.3 Hue and Intensity Histograms

Using quad trees as color features connects color values with spatial coordi-
nates in a general, if crude, way. Histograms are purely a measure of the color
content over an image, and they can be made more accurate. Each bin in the

402 Chapter 10 ■ Content-Based Search — Finding Images by Example

histogram represents a range of colors, and the bins can be made as large or
small as needed. RGB values are awkward for histogramming purposes, since
they form a three-dimensional vector. A scalar is much better, and so hue
might work; so might the intensity (grey level).

The OpenCV function cvCvtColor can convert an RGB image into an HSV
image. Hue will be the first value in the three part CvScalar pixel value of
such an image, and takes on a value between 0 and 179 (half of its full range
of 0-360 degrees). Building a hue histogram H is a simple matter of finding
the hue component k of each pixel and incrementing that bin: H[k] += 1.
The histogram must be normalized or images of different sizes cannot be
compared. Normalization involves dividing each bin by the sum of all bins S,
which in most cases will be the same as the number of pixels.

Computing a hue histogram takes only about a dozen lines: convert the
image to HSV, zero the histogram, visit all pixels and increment the bins, and
divide by the total number of pixels. The following code also ignores grey
pixels, which have little or no hue:

cvCvtColor(img, hsv, CV_BGR2HSV);

for (i=0; i<180; i++) hhisto[i] = 0;

for (i=0; i<hsv->height; i++)

for (j=0; j<hsv->width; j++)

{

s = cvGet2D (hsv, i, j);

if (isGrey(s)) continue; // no hue

k = (int)s.val[0];

hhisto[k] += 1; n++;

}

for (i=0; i<180; i++) hhisto[i] /= n;

Now all that is needed is a way to compare two histograms to each other.

10.3.1.4 Comparing Histograms

Two histograms, H1 and H2, are equal if H1[i] = H2[i] for all legal values of i. If
they are not equal, how near to being equal are they? And, more importantly,
which one is most similar to a target histogram H3?

Histograms are N-dimensional arrays, and can be treated like vectors. It is
possible to compute a Euclidean distance between two histograms in the same
way that a norm is computed for a vector. This is actually how a lot of software
computes histogram similarity — as an N-dimensional distance between the
histograms, calculated bin by bin. For example, the following code is a typical
way to implement this:

for (i=0; i<N; i++) sum += (H1[i]-H2[i])*(H1[i]-H2[i]);

d = sqrt(sum);

Chapter 10 ■ Content-Based Search — Finding Images by Example 403

It often works, too, but misses a key point: bins near each other in a
histogram represent data in the image that is similar. Adjacent bins represent
similar colors or grey levels. In a typical vector, adjacent ‘‘bins’’ represent
orthogonal dimensions, and are unrelated.

What would be a better way to compare histograms? Similarity in nearby
bins needs to be acknowledged, while differences need to be penalized. One
way is to compare cumulative histograms, in which the value of a bin is the
sum of the bins in the regular histogram to that point. If H is a histogram, then
a cumulative histogram C is determined as follows:

C[0] = H[0];

for (i=1; i<N; i++) C[i] = C[i-1] + H[i];

In a normalized histogram, the sum over all bins will be 1. In a cumulative
histogram, the bin values approach 1 as the bins are examined in increasing
order. A difference between two histograms early on (i.e., low bin indices) sums
repeatedly over successive bins until it equalizes, meaning that differences in
distant bins have a greater impact than differences in nearby bins. This is what
is wanted.

Does Euclidean distance on cumulative histograms (hueC) work better (i.e.,
higher success rate) than using simple histograms (hue)? A simple experiment
using the code on the website (searchCM.c) says ‘‘yes,’’ but not too much.
Searching for a sample of 1801 images in the ALOI set of over 700,000 using
both methods yields:

Simple histogram — 65.9% success

Cumulative histogram — 69.1% success

10.3.1.5 Requantization

All color images consist of pixels having red, green, and blue components,
but obviously images contain more colors than just those three. Consider the
rainbow; Newton labelled his basic colors red, orange, yellow, green, blue,
indigo and violet. Adding white and black for a total of nine prototype colors
allows a reasonable range of colors for a matching process. Any image can
be processed so as to contain only these colors, and in such a way that pixels
take on the value of the prototype that is closest to their own color. Section 1
was an initial discussion of this concept in the context of segmentation. Here
the discussion, and hence the prototypes, centers about separating matching
images from non-matching ones.

Newton’s colors are interesting historically, but they contain too much
blue and do not take into account distances between colors. The prototypes

404 Chapter 10 ■ Content-Based Search — Finding Images by Example

should be, as far as is possible, equal distances from each other. The ones used
here will be:

Red (170, 0, 0)

Orange (170, 85, 0)

Yellow (170, 170, 0)

Green (0, 170, 0)

Blue (0, 0, 170)

Purple (85, 0, 170)

Pea (85, 170, 0)

Black (25, 25, 25);

White (240, 240, 240)

Grey (128, 128, 128)

When using these prototypes, the colors in the image are replaced and a
histogram of the ten colors is constructed and normalized. This is compared
with other such histograms in the data collection, and the nearest one in the
Euclidean sense is the best match. This will be referred to as the proto feature.

10.3.1.6 Results from Simple Color Features

All these features, computed for the entire ALOI data set, were calculated and
stored in one large text file, master3.txt. Then target images were selected
from the data set at random and a query was launched: which images in
the set were the best matches for the target? Of course, the image itself is in the
set, and should be a perfect match, but which others would match the target?
An important result is how often an image in the same class was a match; all
images of the same object reside within the same directory, so it is easy to tell
when such a match occurs. Any images in the same directory as the target will
be considered a match.

The results are given in Table 10.1. This can be thought of as a basic
comparison of the color features for effectiveness in queries. The overall
results are encouraging, but some provisions should be mentioned. The ALOI
data set has 1000 objects viewed on a black background. Each object is imaged
from 72 distinct points on a circle with the object at the center (every five
degrees). The consequences are that there will be a few images that are very
similar to any target in the set because a five degree orientation change is
rarely going to make a huge difference in what can be seen. Also, the large

Chapter 10 ■ Content-Based Search — Finding Images by Example 405

amount of black is a blessing and a curse: the backgrounds are constant, but
the large number of black pixels can make scale a feature by default. That is,
small objects will have more black in them, and large objects will have less.
This does not represent a true property of the object, since the size within the
image can be changed when the image is captured. Small objects will match
other small objects because of the number of black pixels in the histograms and
other color measures. Thus, in the histograms the color black is not included.

Table 10.1: Results for Searching Experiments Using Color Features

FEATURE 0 1 2 3 4 5 6 7 8 9 10 TOTAL %

Mean 0 168 156 197 130 145 127 151 122 163 442 1005 55.8

Quad 0 42 40 144 97 141 124 140 146 143 784 1337 74.2

Hex 0 5 3 48 42 96 88 84 126 102 1207 1607 89.2

Proto 5 592 203 178 174 145 144 123 108 129 373 877 48.7

Hue 0 95 124 129 141 126 114 130 129 173 640 1186 65.9

HueC 0 78 106 119 123 134 115 132 135 176 686 1244 81.0

A vote was taken over the first five methods for each trial to get an overall
result. A majority vote would need 3

5 for a winner. The results, out of five
methods over all images, is:

Votes 0 1 2 3 4 5

41 92 209 327 486 646

Total correct = 1459 (81.0%)

In the Table 10.1, 1801 images have been selected from the total set to be
targets for a search. The class of those targets is known, and the numbers in
each column indicate the number of times a search yielded the correct target:
an image from the same class (directory). Each search selected the best ten
matches to a target image and uses those to determine the class of the target.
Each column indicates how many times a specific number of matches were
obtained, 0 through 10. In a majority vote, any more than 5 matches that agreed
with each other would be a definitive class indicator, so the success column
shows how many times that happened, and what that is as a percentage of the
total number of trials. This can be called the success rate, as before.

The success rate is more often called precision in information retrieval circles.
It is defined as the number of relevant documents retrieved by a search

406 Chapter 10 ■ Content-Based Search — Finding Images by Example

(successes) divided by the total number of documents retrieved by that search.
Another measure used in information retrieval is recall; this is defined as
the number of successful retrievals divided by the total number of existing
relevant documents (which should have been retrieved). The trials being done
here only perform ten retrievals, so recall cannot be measured.

Recall is a measure of completeness, whereas precision can be seen as a
measure of accuracy or exactness. 100% precision means that the result of
every search was relevant. 100% recall means that every relevant document
was retrieved.

A single number that combines both recall and precision is the F-score, which
is defined as:

F = 2.0∗ (recall∗precision)/(recall + precision)

This is called the F1 measure because others exist that weight recall differently
from precision. In the literature, recall and precision are shown as a graph,
giving the relationship between the two. It is sometimes hard to compare
graphs, so F1 can be useful in these cases.

A scheme that is not common but that is well understood by non-specialists
is the search engine evaluation scheme. When a web search engine, such as
Google, is given a query, the resulting responses are ranked according to
relevance, and are returned and displayed in that order. The number of
responses on the page is q, frequently 10 or so, but q = 30 is not too unusual.
There are many ways of reporting success in this kind of enterprise. We are
suggesting that success is the percentage of relevant responses on the first page of
a typical query. This is certainly a measure of success that would be quickly
understood by anyone who uses web search engines frequently. Out of the ten
responses reported on the first page of a response to a query, how many of
them are really a match? When asked this question of text-based queries, the
average person would accept 3 successes (30%), which they think of as typical;
this is based on a casual poll of students and university staff.

Each data set has limitations with respect to its use in testing of retrieval
methods that should be understood. In photos of scenery and portraits,
the background is actually a part of what is being searched. Sky = blue,
grass = green, and these will appear prominently in outdoor images. Some-
times the match will be to these things rather than to, for instance, the car in
the middle of the picture. That issue is not present in this (ALOI) data set, and
some may say it is ‘‘cheating’’ to do things this way. It is cheating only if it
is not pointed out. In addition, some software developers will point out that
in outdoor scenes it is reasonable that matches occur to other outdoor scenes
at random, as the content is ‘‘outdoors.’’ It is important to understand the
limitations of any method, and to understand why certain matches take place
the way they do. Perfection in such searches can be achieved only by observing
the results of the various algorithms and adjusting the code and parameters to

Chapter 10 ■ Content-Based Search — Finding Images by Example 407

improve the results. It is natural that each person will have a different set of
images, and that a different mix of methods would work for that set than for
others.

10.3.1.7 Other Color-Based Methods

A technique described in the literature [Tico, 2000] for creating color histograms
has the rather desirable property that it disregards achromatic information,
often included as noise in other types of color histogram. This is accomplished
by calculating the standard deviation of the red, green, and blue components
of a color pixel and then normalizing to the range [0,1]. As a reminder, the
standard deviation is:

σ =
√√√√ n∑

i = 1

(x − x)2

n
(EQ 10.1)

In fact, any measure of variation between the R, G, and B components would
probably work (e.g., average difference, bitwise AND), but standard deviation
is well known and easy to calculate.

Now the chrominance of a pixel is found using a piecewise linear function:

µ(σ) =

0 if 0 ≤ σ < a

2
(

σ − a
b − a

)2

if a ≤ σ <
a + b

2

1 −
(

σ − b
b − a

)2

if
(

a + b
2

≤ σ < b
)

1 if b ≤ σ < 1

(EQ 10.2)

where a and b are constants between 0 and 1, and a < b. In past experiments
that were conducted, effective values of a and b were determined to be a = 0.05
and b = 0.8. These values are empirical, and it may be that further work is
needed to do better. The chrominance values were calculated for each pixel in
the region and were used to construct a color histogram with 16 bins.

The use of the mean color value worked better than expected (55%) and
perhaps more could be made of the fundamental idea. An underlying principle
is that of moments, which are polynomials of increasing order that describe the
shape of a statistical distribution. The first-order moment is:

n∑
i = 1

(x − x)1 (EQ 10.3)

The exponent ‘‘1’’ is left in to emphasize the fact that the order of the moment
is indicated by this exponent. This is nearly the formula for the mean; the mean

408 Chapter 10 ■ Content-Based Search — Finding Images by Example

is the first-order moment divided by n, or the amount of first-order moment
per pixel.

The second-order moment would be:
n∑

i = 1

(x − x)2 (EQ 10.4)

which is the numerator of the variance formula. The variance is the second-
order moment per pixel. There is a third-order moment (the skewness), fourth
(kurtosis), and so on. The point is, if the mean (first-order moment) is useful
in searching for images, then why not the others? One idea is to simply use
the mean, standard deviation, and skewness values of the color components
over the image as a nine-component feature vector [Stricker, 1995]. A simple
experiment (searchCM on the website) uses a weighted feature vector having
these nine components, but because the mean has a larger scale than standard
deviation, which in turn is larger than skewness, the three parts are normalized
differently before combining them into a vector. The result, over a run of 654
random searches, is 586 successful retrievals (89.6%). This is better than any of
the histogram-based methods on this data set!

All important content-based searching systems use color as a key feature,
and almost all use some variation on color histograms. Such methods are at
the heart of working systems today, although success is still somewhat less
that is to be desired.

10.3.2 Grey-Level Image Features
Searching in sets of grey-level images is not that important from the perspective
of adding functionality to a system. Most users would not search for grey
images. It is important because color is simply not enough information when
conducting a search. A search for red Mustang automobiles would not produce
any blue or white ones, and it seems obvious that what is being searched for
is the kind of car, not its color. Certainly some objects are clearly classified by
color: the sky is normally blue, trees are green, snow is white. On the other
hand, dogs, cats, cars, houses, and a huge variety of other objects come in
many colors. Can we search for these?

There are methods that can be used for grey-level images, and these should
generalize to color images, too. The RGB components of a color image can be
averaged to give a grey level. Thus, techniques discussed here can be added to
those that use color to yield a more robust composite scheme for content-based
searching.

The website includes a directory, c:\aipcv\grey, where grey images can be
placed for searching, and the code provided with this book looks there for the
data set. The ALOI collection has sets of grey images that can be used for testing,
and can be downloaded from http://staff.science.uva.nl/ ~aloi/.

Chapter 10 ■ Content-Based Search — Finding Images by Example 409

10.3.2.1 Grey Histograms

A grey-level histogram is a simple modification of a color histogram, and
the methods used for comparing and using color histograms all apply here.
Because grey level is only a single measure (unlike color, which is a 3D vector),
it might not be as discriminatory. Also, a slight shift of all grey levels in an
image (i.e., brightening or a linear contrast shift) will not change the image
content but will significantly affect the average level and the histogram.

A basic grey-level histogram over the entire image would have 256 bins,
although it is possible that decreasing the number of bins could be accom-
plished while not affecting the results too much. A quad tree could be used
to build a set of grey levels over hierarchical sub-images, as was done with
color quad trees. Using the first level gives four levels to be compared, and
using the second level gives sixteen levels, as before. The results, expressed as
a success rate (how often the correct image class was matched to a target) are:

Level 1 quad tree — 292/654 = 44.6%

Level 2 quad tree — 564/654 = 86.2%

Basic grey histogram — 586/654 = 89.6%

Cumulative grey histogram — 586/654 = 89.6%

10.3.2.2 Grey Sigma — Moments

Sigma (σ) or standard deviation has been described as a simple texture metric,
but really it is just a measure of the variability of the brightness as captured
in the pixel values. The intensity variation across a region is determined by
calculating the standard deviation of the intensity values of all the pixels. As
discussed in Section 10.3.1.7, this is the second-order moment; a vector feature
consisting of three or four moments can be built quite easily and used as a
means of measuring image similarity.

A basic system that used mean, standard deviation, and skewness and
calculated a weighted Euclidean distance to determine similarity gave the
correct image class 113/654 times, or 17.3% of the time. This corresponds to
one or two hits per web search, for example — not too bad for such a simple
calculation. As a basis for comparison, using the ALOI data set (720,000 images
in 1000 categories) the random level of success is 1/1000, or 0.1% success.

10.3.2.3 Edge Density — Boundaries Between Objects

Edge density is a simple geometric measure based on the strength of the edges
in an image region or in the whole image. It can be found by first using a
standard edge detector (e.g., Sobel, Section 2) to enhance the pixels that belong
to edges and boundaries. The result is a set of pixels whose values represent

410 Chapter 10 ■ Content-Based Search — Finding Images by Example

the strength of the edge at that point. Pixels far from an edge are 0, and
those near an edge increase to a maximum value. The edge density measure is
calculated as the mean pixel value of the edge enhanced image.

Why is this a valid feature for comparison? Because edges represent the
boundary between objects and the background, or between objects. In either
case, they are located where objects exist in the image, and so are connected
with content. This feature represents a measure of how ‘‘busy’’ the image is.

10.3.2.4 Edge Direction

Many edge detectors, including the Sobel edge detector, can be implemented
as a convolution of a small (e.g., 3x3) image mask, and often multiple masks,
each with a directional bias. This allows a crude estimate of edge direction
to be made. In particular, for a typical 3x3 region in an image, the two Sobel
masks are:

−1 0 1 −1 −2 −1
sx = −2 0 2 sy = 0 0 0

−1 0 1 1 2 1

Given that the response to each mask represents a vector in the X or Y direction,
the direction associated with the pixels in the region can be established using
simple trigonometry:

θ = arctan(Sy/Sx)

This edge-direction value is used to compute an overall estimate of the
direction of the edges in a region by calculating a resultant vector over all
pixels in the region. When similarity between images is calculated, it is done
using differences between these region-based resultants.

10.3.2.5 Boolean Edge Density

This is, on the face of it, very similar to the edge density method above. After
the edge detector has been applied to the image, the image is thresholded so
that what could be called ‘‘edge pixels’’ are white (1) and non-edge pixels are
black. The measure returns the proportion of white (edge) pixels in the region.
The difference between this and standard edge density is seen in images with
noise. Boolean edge density sometimes allows noise to be minimized; both
noise and edges are high frequency information, and the thresholding process
in Boolean edge density tends to reduce the effect of noise.

This is the least successful feature seen so far, at least when applied to an
entire image. It classifies an image into the correct group only 3/654 times.
However, it serves as a useful segue into the next section: when Boolean
edge density is measured over 25 equally sized sub-regions of an image

Chapter 10 ■ Content-Based Search — Finding Images by Example 411

(5x5 grid imposed over the image) and the resulting 25 Boolean edge density
measurements are made into a feature vector and used to determine similarity,
the results are much better: 361/654 successes, or 55.2%. So, perhaps it is time
to look at ways to incorporate spatial concerns into the search.

10.4 Spatial Considerations

Based on prior experimentation (e.g., [Rao, 1999]), it is generally appreciated
that statistical measures based on entire images are often less successful in
characterizing the image in a search or matching context than using the same
measurements based on subdivisions of the same image. This makes a great
deal of sense, not the least because in many images the objects of greatest
interest are near the center of the image. Simply giving a higher priority to
pixels near the center might improve searches, and omitting pixels on the
boundaries would certainly make them faster.

When using sub-regions, one or more of the features is measured on each
defined region and collected into a large set of sets of features. Based on the
work of Rao, five distinct ways of defining sub-regions are apparent: overall,
rectangular, angular, circular, and hybrid. Figure 10.3 illustrates the shape of
these regions.

Overall Angular

Circular Hybrid

Rectangular

Figure 10.3: The five types of sub-region used in the similarity search process.

10.4.1 Overall Regions
This is the trivial region, the entire image considered as a single region. This
corresponds with the usual global techniques that have been discussed and
evaluated to this point.

412 Chapter 10 ■ Content-Based Search — Finding Images by Example

10.4.2 Rectangular Regions
This is a first step towards spatial compartmentalization of an image, and is
simple to implement because an image is rectangular, and so are the regions.
The image is broken into multiple vertical and horizontal parts, and then
features are extracted from each of the regions in the grid. For example, if
the image is cut vertically four times and horizontally four times, then there
will be 25 sub-regions. If this image is 250x500 pixels, then each region is
50x100 pixels, if there is no overlap between the regions. Allowing regions to
overlap has the advantage of blurring the boundaries between the regions and
allowing some natural variation in position of objects.

Advantages — Fast, easy to implement.

Disadvantages — Not designed with rotation in mind.

Going back to the grey-level edge features, recall that the results for the
overall image were lousy: edge density was successful 25/654 times (3.8%),
and Boolean edge density was successful only 3/654 times (0.46%). If these
features are used over sub-regions, the results improve dramatically. Using
25 edge-density measures in a vector, one for each of a 5x5 set of image
sub-regions, edge density is successful 557/654 times (85.2%), edge direction
works 583/654 times (89.1%), and even edge density is successful 361/654
times (55.2%). All trials used the ALOI grey-level image set.

These features are based on geometry, not color or grey level, and so can
be combined with other histogram-based features to create a highly successful
image search engine.

10.4.3 Angular Regions
Angular regions are wedge-shaped sections of the image radiating from the
geometric center of the image (not the centroid, which is pixel-based). An
angular differential of 45 degrees is common, creating eight angular regions.

Advantages — All regions have some center and some outlying pixels;
nice rotational properties.

Disadvantages — More difficult (expensive) to implement than rectan-
gular regions. Some angles are more accurately sampled than others.

This is the most difficult spatial sampling scheme to implement. There are
two good ideas on this subject, the first being to build triangles containing the
portions of the image to be used, and then doing a standard point-in-polygon
test to see if pixels lie within that polygon. The second idea uses a simple angle
created by any pixel and the center of the image. It is this latter idea that will
be described.

Chapter 10 ■ Content-Based Search — Finding Images by Example 413

In OpenCV terms, the geometric center of an image, x, is simply:

(ci, cj) = (x − > height/2, x − > width/2)

Each pixel has (i,j) coordinates, too, and the angle from (i,j) to (ci, cj) to
(ci, cj + 100) can be thought of as the angle made by the pixel relative to the
horizontal. Sampling angular regions is a matter of determining which angular
region a pixel belongs to (i.e., between 0 and 45 degrees) and associating that
with a histogram bin or other feature set.

A function called angle_2pt is provided that takes ci, cj, i, and j as parameters
and returns an angle between 0 and 360 degrees. This turns out to be a spec-
tacularly useful function in general; it can be used for finding angle-distance
signatures, projections, convex hulls, and a score of geometric measures. In
particular, it is used here for angular region sampling. Figure 10.4 shows the
code for the function, as well as some graphical illustrations of the regions it
finds for 45-degree increments.

float angle_2pt (int r1, int c1,

 int r2, int c2)

{

 double atan(), fabs();

 double x, dr, dc, conv;

 conv = 180.0/3.1415926535;

 dr = (double)(r2-r1);

 dc = (double)(c2-c1);

/* Compute the raw angle from Drow, Dcolumn */

 if (dr==0 && dc == 0) x = 0.0;

 else if (dc == 0) x = 90.0;

 else

 {

 x = fabs(atan (dr/dc));

 x = x * conv;

 }

/* Adjust the angle according to the quadrant */

 if (dr <= 0) {//upper 2 quadrants

 if (dc < 0) x = 180.0 - x; // Left

 }

 else if (dr > 0) // Lower 2 quadrants

 {

 if (dc < 0) x = x + 180.0; // Left

 else x = 360.0-x; // Right

 }

 return (float)x;

 }

Figure 10.4: (left) Code for the function angle_2pt, valuable for many situations involving
angles. (right) Angular regions found using this function: regions 0, 1, 2, and 3.

414 Chapter 10 ■ Content-Based Search — Finding Images by Example

10.4.4 Circular Regions
Circular regions consist of concentric circles or rings beginning at the geo-
metric center of the image, as nearly as possible. We used five rings for our
experiments. The radius of the last ring is equal to the maximum of the largest
row and column index.

Advantages — Rotationally invariant; using more rings is not really more
costly. It is easy to weight the rings so that the image center is more
important.

Disadvantages — Expensive to implement. Pixels near the boundary are
arbitrarily assigned to regions.

Sampling is done by determining distance to the image center. If there are
to be five regions, then first compute the radius of the largest possible circle:
r4 = MIN(height, width)/2. Divide this by Nregions-1 (= 4 in this case) giving
the distance between two consecutive circles dr. Now subtract dr from R4 to
give r3, and repeat twice more to find all radii. For example, if the image is
256x256 pixels and five regions are desired, then r4 = 256, dr = 64, r3 = 192,
r2 = 128, and r1 = 64. Any pixel less than r1 in distance from the center pixels
(128,128) is in region 1; pixels less than 128 in distance but greater than 64 are
in region 2; and so on.

10.4.5 Hybrid Regions
Hybrid regions represent a logical combination of angular and circular regions,
as defined above. This is really just a two-dimensional polar coordinate system.
Both the concentric rings seen in circular regions and the radial segments of
the angular regions are superimposed. Finding which region a pixel belongs
to is easy if the circular and angular schemes have already been implemented:
a pixel will belong to an angular region and a circular one, and these can be
indexed in any convenient way.

For example, if 8 angular regions and 5 circular regions are used, there will
be 40 hybrid regions. The groupings are: between 0 and 45 degrees and d >

r4, between 0 and 45 degrees and (d > r3 and d < r4), and so on.

Advantages — Combines the results of all the region-based methods, so
should provide a better result over a wide class of images.

Disadvantages — Expensive to implement because all the methods have
to be calculated.

10.4.6 Test of Spatial Sampling
Given a variety of features, color and grey, and a variety of spatial sampling
methods, there are a huge number of combinations of methods to try out. A
composite system, one that uses multiple algorithms, that uses a selection of

Chapter 10 ■ Content-Based Search — Finding Images by Example 415

color-based and simple shape feature-based techniques, could be put together
quickly. Not only are multiple algorithms being used, but they are being
applied to sub-regions of the images, determined in multiple ways.

Five algorithms were selected for the implementation: grey sigma, edge
density, Boolean edge density, edge direction, and color histograms. For each
algorithm, the five methods of defining regions on the image were used. The
results were compared to each other using each similarity algorithm, and were
compared as well as possible against some methods published in the technical
literature.

A new experimental database was selected, just to try new data with
different properties. The Corel data set has many thousands of images, and
is distributed on CDs. Corel is a well-known software company, famous for
products like Paint Shop Pro, WordPerfect and CorelDRAW Graphics Suite X5.
They distribute image data with their products, and it has been used frequently
for testing of image processing and retrieval algorithms in academic settings.
For this project, 782 images were chosen from 8 classes. Figure 10.5 shows
representative samples of each class. Seven of the classes had 100 images,
while the final one had only 82. The accuracy, A, for each class is calculated
as A = 100c/qn, where c is the number of correct (in-class) retrievals, n is the
number of images in that class, and q represents the number of results that
were returned [Seidl, 2001].

Figure 10.5: Sample images from classes used from the Corel data set.

Given this measure of success, the overall system was initially tested
on the 782 images. Eight tables, one for each class, are needed to convey
all the information resulting from the trials. Each image is queried against
the database, and a table of success percentage with similarity algorithms
occupying columns and region drawing methods as rows. A sample table, the
one for the ‘‘Beach’’ class, is shown as Table 10.2; it is plain to see that there is

416 Chapter 10 ■ Content-Based Search — Finding Images by Example

a significant variability in success across the features and sampling methods
tested. It is also true that the method and region scheme that works best for
one class does not necessarily work the best for some other. What is wanted,
naturally, is a scheme that works best for all classes.

Table 10.2: Region/Feature Accuracies for Select Classes: ‘‘Beach’’ (%)

SPATIAL GREY EDGE EDGE BOOLEAN HUE INTENSITY
SAMPLING SIGMA DIRECTION DENSITY EDGE HISTOGRAM HISTOGRAM
METHOD DENSITY

OVERALL 12.8 18.3 9.6 11.6 23.7 18.5

RECTANGULAR 13.2 20.7 9.6 10.2 22.1 12.7

ANGULAR 12.7 15.1 9.6 9.6 23.7 14.9

CIRCULAR 20.0 12.5 13.1 15.2 23.4 20.1

HYBRID 22.1 21.4 5.8 14.3 25.5 12.4

Source: J.R.Parker, 2007

Figure 10.5 shows representative samples of each class. Unlike the ALOI
data set, the backgrounds are an important aspect of most images.

The experiments involved searching for each image among all the other
images, using every combination of similarity measure and region splitting
method described above. This means that a similarity value has been calculated
for all image pairs in the data collection. These can be sorted into a ranked
list for each algorithm, in which the first image is the best (highest similarity
value, most likely match). We can use these ranked lists as a means to vote for
the best match. The method we have used in the past to do this is called the
Borda count and is described in Section 8.5.5.

Other voting methods were attempted, such as the simple majority vote,
weighted Borda count, and so on, but the simple Borda count appeared to
provide the most robust solution. The overall results, using this set of algorithm
combination methods, are shown in Table 10.3.

This means that, in a web search having ten results per page, the first page
would have five to six correct (directly relevant) matches to the query, on the
average. This is better than our informal poll suggests is acceptable, and better
than the same poll is being achieved now on text-based queries.

In the methods presented, the work of Rao [1999] and that of Tico [2000]
formed a central component, and so it seemed appropriate to compare the
results above against their published work. We implemented both methods
using the original papers as the definitive description of the method; this
means that there is a chance that the resulting program generates results that
are somewhat different from the one used by the original authors. The results
were computed in the same way as for the previous experiment, and are

Chapter 10 ■ Content-Based Search — Finding Images by Example 417

tabulated in Table 10.4. In all cases but one, the composite system here gives
better success rates than any of the others.

Table 10.3: Search Results for Image Classes

IMAGE CLASS RESULT

Horse 86.37%

Beach 28.78%

Dinosaur 98.97%

Flower 81.67%

Bus 58.78%

Elephant 39.30%

Architecture 40.43%

Mountain 26.90%

Overall 56.95%

Table 10.4: Comparison Between Retrieval Methods on Corel Data Set (%)

IMAGE CLASS RAO % TICO % THIS BOOK

Beach 27.7 25.6 28.8

Horse 89.0 68.3 86.4

Dinosaur 42.0 72.6 99.0

Elephant 20.0 24.7 39.3

Flower 46.4 51.3 81.7

Architecture 27.0 24.2 30.4

Bus 36.0 33.7 58.8

Mountain 26.0 19.9 26.9

Overall 39.5 40.4 57.0

Source: J.R.Parker, 2007

10.5 Additional Considerations

Many aspects of content-based search methods have not been discussed yet.
Only a brief summary of other useful techniques can be mentioned here, but
it is interesting to note that most have been described in some other context in
Chapters 2-6.

418 Chapter 10 ■ Content-Based Search — Finding Images by Example

10.5.1 Texture
The texture measures based on grey-level co-occurrence have been used with
some success to determine similarity between images. In particular, energy,
entropy (Section 5.3.5), contrast (Section 5.3.3), and homogeneity (Section
5.3.4) have been used with some success [Ohanian, 1993]. An evaluation in the
literature showed that homogeneity was the best of these features, at about
12% [Howarth, 2004]. Grey-level co-occurrence does typically take longer to
calculate than most of the measures that have been discussed, though, and this
may be a significant factor that argues against its use.

Texture features developed by Tamura [1978] are based on human percep-
tion rather than mathematical principles, and of the six he tested, three of
them have some value for image queries based on texture: coarseness (the
largest size at which a texture exists), contrast (dynamic range, related to
statistical moments), and directionality (an impression of directionality over
a region). These are less computationally intense than co-coherence matrices
and give success rates in the 9–12% range. These measures are frequently
referenced and used in real systems. For example, QBIC [Niblack, 1993] and
MARS [Huang, 1996; Ortega, 1997] both use variations of Tamura features.

10.5.2 Objects, Contours, Boundaries
In the long run, it will be the ability to recognize objects within an image
that will lead to highly successful content-based retrieval. At this time, the
state of the art is relatively poor, but prospects are good. The first step in an
object-based scheme would be segmentation, where the primary object could
be distinguished from the background using colors, texture, edges, and similar
methods. This is followed by either a statistical characterization of the object’s
shape or a structural analysis and comparison against known objects in a data
collection.

Segmentation has been covered in general in Chapters 2, 4, and 5. The point
of segmentation is simply to locate regions of the image that are homogeneous
and contiguous; such regions often represent recognizable objects. These
objects can be measured for shape. Features such as circularity, moments,
Fourier descriptors, and a host of others can be measured and made into
feature vectors, which, in turn, are compared for similarity against classified
sets in the data collection. Mehtre [1997] has compared a large set of shape
features for success in content-based searches, and notes that classical invariant
moments appear to work very well. Vassilieva [2009] describes shape-based
searches in more detail and gives some results.

10.5.3 Data Sets
Data sets on family computers tend to have some similarities. The family cam-
era acquires images of a particular size and resolution, and will have relatively

Chapter 10 ■ Content-Based Search — Finding Images by Example 419

stable color properties. However, people share photos, acquire some from the
Internet and websites, and crop and edit photos. The result is that data sets in
the wild have images with widely varying sizes, scales, and other properties.

In order for a content-based query system to provide the best results in these
cases, it is probable that measurements should be made using fixed-size images.
The users’s images should not be altered, of course, but they should be scaled
down to a constant fixed size (say, 256x256) before features are measured.
Target images are likewise scaled before their features are extracted, making
it more likely that matches will represent visually similar images.

Similarly, it may be better to modify the contrast of images to have intensity
ranges that follow a known pattern. Images should have a similar contrast
and should fill the intensity range before having features measured, at least
in many cases. Images of a baseball game should be identified as the same
regardless of the mean grey level over the image, and a copy of an image
should not be thought of as different just because it is darker than the original.

It has been said before, and bears repeating, that objects in the center of
an image are more important than those in outlying areas. Pixels near the
center can be weighted more highly simply by multiplying them by a number
greater than 1. Using a fixed-size image as a template, it is a simple matter to
construct an image of weights where the center has, perhaps, a value of 2.0
and the outlying edges have a value of 0.2. Weighting pixels with these values
is simple, and normalizing with respect to the weights is simple, too. The
pixel values are multiplied by the weights before being used, and normalizing
means dividing by the sum of the weights in any specified region.

Finally, the nature of the image set is important in some cases. Some data
sets are highly homogeneous. Medical image data, for example, tend to be,
as are more industrial data sets. It may be best to identify specific features in
homogeneous data sets that permit fine degrees of variation to be detected,
or that look in particular places in the image for some kinds of features. It is
not cheating to take advantage of prior knowledge of the data, so long as the
method is applied only to the data for which it was designed.

10.6 Website Files

A good listing of image ‘‘databases’’ can be found at www-i6.informatik

.rwth-aachen.de/dagmdb/index.php/Content-Based_Image_Retrieval.

angular.c Samples an image using the angular method and
displays the sub-regions.

check.c Confirms the correctness of a binary file of features
against the text file.

420 Chapter 10 ■ Content-Based Search — Finding Images by Example

convert.c Converts a master text feature file into a binary file;
binaries are faster and easier to read.

display.c Displays the images in the data set directory.

listGreyFiles.c Creates a master file of grey-level image names.

makeCM.c Makes a file of color-central moments.

makeMaster.c Creates a master file of images by scanning a
directory.

makeMaster2.c Creates a master text file of image features using
the images in the master file.

makeMasterGrey.c Creates a master feature file (binary only) for
grey-level image data set.

quadtree.c Builds and displays a color-based quad tree.

search1.c Searches for an image, reads the image file name
from the console, and searches the data set for
others like it.

search2.c Tests extracted features using already collected
features from the data set to conduct searches and
collect statistics.

searchCM.c Tests a collection of color features on a set of color
images.

searchGrey.c Tests a collection of grey level-features by
conducting 654 searches using pre-computed
features and by collecting statistics.

searchGreyMoments.c Use grey-level moments to search. Conducts more
than 600 searches and collects statistics.

searchGreyQuad.c Use grey-level histograms, including quad trees, to
search. Conducts 654 searches and collects
statistics.

10.7 References

Agrawal, R., K. Lin, H. S. Sawhney, and K. Shim. ‘‘Fast Similarity Search in
the Presence of Noise, Scaling, and Translation in Time-Series Databases.’’
Proceedings of the 21st International Conference on Very Large Data Bases. Zurich,
Switzerland (1995): 490–501.

Ankerst M., B. Braunmüller, H. P. Kriegel, T. Seidl. ‘‘Improving Adaptable
Similarity Query Processing by Using Approximations.’’ Proceedings of the

Chapter 10 ■ Content-Based Search — Finding Images by Example 421

24th International Conference on Very Large Data Bases. New York, NY (1998):
206–217.

Ankerst, M., G. Kastenmüller, H. P. Kriegel, T. Seidl. ‘‘3D Shape Histograms
for Similarity Search and Classification in Spatial Databases.’’ Advances in
Spatial Databases, 6th International Symposium SSD 99. Hong Kong, China
(July 20–23, 1999): 207–226.

Ankerst M., H. P. Kriegel, T. Seidl. ‘‘A Multistep Approach for Shape Similarity
Search in Image Databases.’’ IEEE Transactions on Knowledge and Data
Engineering 10, no. 6 (1998): 996–1004.

Beckmann N., H. P. Kriegel, R. Schneider, B. Seeger. ‘‘The R*-tree: An Efficient
and Robust Access Method for Points and Rectangles.’’ Proceedings ACM
SIGMOD International Conference on Management of Data. Atlantic City, 1990:
322–331.

Berchtold S., C. Böhm, B. Braunmüller, D. Keim, H. P. Kriegel. ‘‘Fast Parallel
Similarity Search in Multimedia Databases.’’ Proceedings ACM SIGMOD
International Conference on Management of Data. Tucson, 1997: 1–12.

Berchtold S., C. Böhm, D. Keim, H. P. Kriegel. ‘‘A Cost Model for Nearest
Neighbor Search in High-Dimensional Data Spaces.’’ Proceedings of the 16th
ACM Symposium on Principles of Database Systems. Tucson, 1997: 78–86.

Berchtold S., C. Böhm, D. Keim, H. P. Kriegel. ‘‘The X-tree: An Index Structure
for High-Dimensional Data.’’ Proceedings of the 22nd International Conference
on Very Large Data Bases. Bombay (Mumbai), India: Morgan Kaufmann, 1996,
28–39.

Berchtold S., H. P. Kriegel. ‘‘S3: Similarity Search in CAD Database Systems.’’
Proceedings of the ACM SIGMOD International Conference on Management of
Data. Tucson, AZ: ACM Press, (1997): 564–567.

Brinkhoff, T., H. P. Kriegel, R. Schneider. ‘‘Comparison of Approximations
of Complex Objects Used for Approximation-based Query Processing in
Spatial Database Systems.’’ Proceedings of the 9th International Conference on
Data Engineering [ICDE]. Vienna, Austria: IEEE Computer Society, (1993):
40–49.

del Bimbo, A., Visual Information Retrieval. San Francisco: Morgan Kaufmann,
1999.

de Borda, Jean-Charles. Memoire sur les Elections au Scrutin. Paris, France:
Histoire de l’Academie Royale des Sciences, 1781.

Faloutsos, C., R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, W.
Equitz. ‘‘Efficient and Effective Querying by Image Content.’’ Journal of
Intelligent Information Systems 3 (1994): 231–262.

Faloutsos, C., K. I. Lin. ‘‘FastMap: A Fast Algorithm for Indexing, Data-Mining
and Visualization of Traditional and Multimedia Data.’’ Proceedings of the
ACM SIGMOD International Conference on Management of Data. San Jose, CA:
ACM Press, 1995, 163–174.

422 Chapter 10 ■ Content-Based Search — Finding Images by Example

Faloutsos, C., M. Ranganathan, Y. Manolopoulos. ‘‘Fast Subsequence Matching
in Time-Series Databases.’’ Proceedings of the ACM SIGMOD International
Conference on Management of Data. Minneapolis, MN: ACM Press, 1994,
419–429.

Gaede, V. and O. Günther. ‘‘Multidimensional Access Methods.’’ ACM Com-
puting Surveys 30, no. 2 (1998): 170–231.

Geusebroek, J. M., G. J. Burghouts, and A. W. M. Smeulders. ‘‘The Amsterdam
Library of Object Images.’’ International Journal of Computer Vision 61, no. 1,
(2005): 103–112 (http://staff.science.uva.nl/∼aloi/).

Guttman, A. ‘‘R-trees: A Dynamic Index Structure for Spatial Searching.’’
Proceedings of the ACM SIGMOD International Conference on Management of
Data. Boston: ACM Press, 1984, 47–57.

Hafner, J., H. S. Sawhney, W. Equity, M. Flickner, and W. Niblack. ‘‘Efficient
Color Histogram Indexing for Quadratic Form Distance Functions,’’ IEEE
Transactions on Pattern Analysis and Machine Intelligence 17, no. 7 (1995):
729–736.

Holm, L., and C. Sander. ‘‘Touring Protein Fold Space with Dali/FSSP.’’
Nucleic Acids Research 26 (1998): 316–319.

Howarth, P. and S. Rüger. ‘‘Evaluation of Texture Features for Content-Based
Image Retrieval.’’ Third International Conference on Image and Video Retrieval.
Lecture Notes in Computer Science 3115 (2004): 326–334.

Korn, F., N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Protopapas. ‘‘Fast
and Effective Retrieval of Medical Tumor Shapes.’’ IEEE Transactions on
Knowledge and Data Engineering 10, 6 (1998): 889–904.

Kriegel, H. P., T. Seidl. ‘‘Approximation-Based Similarity Search for 3-D
Surface Segments.’’ GeoInformatica 2, no. 2 (1998): 113–147.

Kruskal, J. B., and M. Wish. Multidimensional Scaling. Beverly Hills, CA: SAGE
Publications, 1978.

Mehtre, B. M., M. S. Kankanhallib, and W. F. Lee. ‘‘Shape Measures for
Content Based Image Retrieval: A Comparison.’’ Information Processing and
Management 33, no. 3 (1997): 319–337.

Muller, H., S. Marchand-Mailler, and T. Pun. ‘‘The Truth About Corel Evalu-
ation in Image Retrieval.’’ Proceedings of the International Conference on Image
and Video Retrieval. Berlin: Springer-Verlag, 2002, 38–49.

Niblack, W. ‘‘The QBIC Project: Querying Images by Content Using Color,
Texture, and Shape.’’ Proceedings of SPIE 1908, no. 1 (1993): 173–187.

Ohanian, P.. R. Dubes, ‘‘Performance Evaluation for Four Classes of Textural
Features.’’ Pattern Recognition 25 (1992): 819–833.

Parker, J. R. ‘‘Voting Methods for Multiple Autonomous Agents.’’ Proceedings of
Third Australian and New Zealand Conference on Intelligent Information Systems.
ANZIIS-95. Perth, Australia (1995): 128–133.

Chapter 10 ■ Content-Based Search — Finding Images by Example 423

Parker, J. R., and B. Behm. ‘‘Composite Algorithms in Image Content Searches.’’
International Journal of Software Engineering and Knowledge Engineering, World
Scientific 17, no. 4 (2007): 451–463.

Rao, A., R. K. Srihari, and Z. Zhang. ‘‘Spatial Color Histograms for Content-
based Image Retrieval.’’ Proceedings of the IEEE International Conference on
Tools with Artificial Intelligence. Chicago, 1999, 183–186.

Sawhney H. and J. Hafner. ‘‘Efficient Color Histogram Indexing.’’ Proceedings
International Conference on Image Processing. Austin, TX: IEEE Computer
Society 1994, 66–70.

Seidl, T. ‘‘Adaptable Similarity Search in 3-D Spatial Database Systems.’’
(Ph.D. thesis, University of Munich, 1997). Munich, Germany: Herbert Utz
Publishers, 1998.

Seidl, T. and H. P. Kriegel. ‘‘Efficient User-Adaptable Similarity Search in Large
Multimedia Databases.’’ Proceedings of the 23rd International Conferences on
Very Large Data Bases. Athens, Greece: Morgan Kaufmann 1997, 506–515.

Seidl, T. and H. P. Kriegel. ‘‘Optimal Multi-Step k-Nearest Neighbor Search.’’
Proceedings of the ACM SIGMOD International Conference on Management of
Data. Seattle, WA: ACM Press 1998, 154–165.

Seidl, T. and H.-P. Kriegel. ‘‘Adaptable Similarity Search In Large Image
Databases,’’ in State-of-the-Art in Content-Based Image and Video Retrieval, ed.
R. Veltkamp, H. Burkhardt and H.-P. Kriegel. Boston: Kluwer Academic
Publishers, 2001, 297–317.

Sellis, T., N. Roussopoulos, and C. Faloutsos. ‘‘The R+-Tree: A Dynamic
Index for Multi-Dimensional Objects.’’ Proceedings of the13th International
Conference on Very Large Data Bases. Brighton, England: Morgan Kaufmann
1987, 507–518.

Stricker, M. and M. Orengo. ‘‘Similarity of Color Images.’’ Proceedings of the
SPIE Conference on Storage and Retrieval for Image and Video Databases III. 2420
(1995): 381–392.

Swain, M. and D. Ballard. ‘‘Color Indexing,’’ International Journal of Computer
Vision, 7 (1991): 11–32.

Tamura, H., S. Mori, and T. Yamawaki. ‘‘Textural Features Corresponding
to Visual Perception.’’ IEEE Transactions on Systems, Man, and Cybernetics 8
(1978): 460–472.

Tico, M., T. Haverinen, and P. Kuosmanen. ‘‘A Method of Color Histogram
Creation for Image Retrieval.’’ Proceedings of the Nordic Signal Processing
Workshop NORSIG2000. Kolmården, Sweden, 2000, 157–160.

Vassilieva, N. S. ‘‘Content-based Image Retrieval Methods.’’ Programming and
Computer Software 35, no. 3 (2009): 158–180.

White D. A., and R. Jain. ‘‘Similarity Indexing with the SS-tree.’’ Proceedings
of the 12th International Conference on Data Engineering. New Orleans, IEEE
Computer Society, 1996, 516–523.

424 Chapter 10 ■ Content-Based Search — Finding Images by Example

Yen, C.-Y. and K. J. Cios. ‘‘Image recognition system based on novel measures
of image similarity and cluster validity.’’ Neurocomputing 72, no. 1–3 (2008):
401–412.

Zhang, D. and G. Lu. ‘‘Content-Based Shape Retrieval Using Different Shape
Descriptors: A Comparative Study.’’ Proceedings of the IEEE International
Conference on Multimedia and Expo, Tokyo: IEEE Computer Society 2001,
317–320.

10.7.1 Systems
Faloutsos, C., W. Equitz, M. Flickner, W. Niblack, D. Petkovic, and R. Barber.

‘‘Efficient and Effective Querying by Image Content.’’ Journal of Intelligent
Information Systems, 3. Kulwer Academic Publishers, 1994, 231–262.

Huang, T. S., S. Mehrotra, and K. Ramchandran. ‘‘Multimedia Analysis and
Retrieval System (MARS) Project.’’ Proceedings of the 33rd Annual Clinic on
Library Application of Data Processing — Digital Image Access and Retrieval,
Urbana-Champaign, IL: PUBLISHER 1996, PAGES.

Ma, W. Y. and B. S. Manjunath. ‘‘NetRa, A Toolbox for Navigating Large Image
Databases.’’ Proceedings of the International Conference on Image Processing,
Santa Barbara, CA: IEEE Signal Processing Society Vol. 1, 1997, 568–571.

Ortega, M., Y. Rui, K. Chakrabarti, S. Mehrotra, and T. S. Huang. ‘‘Supporting
Similarity Queries in MARS.’’ Proceedings of the Fifth ACM International
Conference on Multimedia, Seattle: ACM Press, 1997, PAGES.

Smith, J. and S. F. Chang. ‘‘VisualSEEK: A Fully Automated Content-based
Image Query System.’’ Proceedings of the Fourth ACM International Conference
on Multimedia, Boston: ACM Press, 1996, 87–98.

C H A P T E R

11
High-Performance Computing

for Vision and Image Processing

Gordon E. Moore, the founder of Intel, once observed that the number
of transistors that can be placed on an integrated circuit doubled every
20 months. The implication is that the amount of computing power that could
be purchased for a fixed price (bang for the buck) also doubled at the same rate.
This was accomplished for many years by making CPUs smaller and faster;
however, since perhaps 2007, speed increases have been as much the result of
using parallel computing (multiple processors) as it has been as result of faster
single CPUs. In 2010, it is rare to find a PC running a single processor faster
than 3.5 GHz; it is relatively common to find PCs with 3 or 4 processors, each
faster than 3 GHz. These systems are less expensive than single processor
systems of 2005 and can do a lot more work.

A multiple CPU system can do more computation per time unit than a
single CPU system in situations where the problem itself can be split into
parts, and the data can too. A two-dimensional Fourier transform is just such
a problem. Each row is transformed independently, which can be done by
distinct processors, followed by the columns. Sorting, on the other hand, is not
such a problem, and it is difficult to gain a computational advantage by using
multiple processors to sort a collection of numbers. Most image-processing
tasks can be applied to parts of an image and then merged later into an
image again, meaning that parallel computing can be used for a performance
improvement. It is also true that with the increase in typical image sizes over
the past decade and the algorithmic complexity of many image processing
methods, there is a good reason to consider it.

Unfortunately, an overhead is associated with breaking a problem into parts
that affects the speed improvement and, in fact, limits the gains that can be
achieved. There is also a programming cost, and frequently a cost connected

425

426 Chapter 11 ■ High-Performance Computing

with the equipment and software needed. Let’s see if there are some relatively
simple and inexpensive ways to achieve some parallelism.

11.1 Paradigms for Multiple-Processor
Computation

There are multiple paradigms for performing computations in parallel, and
a few ways to implement each. A vector computer performs multiple compu-
tations on multiple data elements using special hardware. For example, such
a machine can multiply each element of a vector by another number in the
time needed to multiply two numbers, speeding up the computation time by
a factor of N (the size of the vector). A problem is that vector computers are
special-purpose machines and expensive. Another problem is that the N-times
speedup depends on a setup (requiring time), so a gain is possible only if a lot
of calculating is going on. The pump needs to be primed, as it were.

Distributed computing involves sending parts of a problem to various pro-
cessors (or computers, on a network). Each processor does its share of the
computation and sends the results back to some central repository. This style
of computing needs little or no special hardware, but some time is needed to
send the data to each processor and then for the processor to return the answer.
Input/output takes a lot more real time than does computation or memory
access. This means that a distributed computation is faster than a simple one
only if the time needed to send the data to another processor is shorter than
the time needed to do a calculation and receive the results

11.1.1 Shared Memory
A shared-memory multiprocessor possesses a collection of CPUs that are near
enough to each other physically that they can use the same memory. The
nearness increases speed but means that the hardware is specialized and
difficult to expand, in general. Multi-core CPUs on PCs are essentially shared
memory multiprocessors, as are many vector machines.

The nature of these parallel computers creates some programming difficul-
ties. Although many processors can read the same memory location at the
same time, writing to memory requires some sort of protection. Without it, the
results of calculations can be unpredictable. For example, consider a program
that executes on two computers simultaneously. The pixel value at (i,j) is
RGB = (128, 84, 200).

Processor 1 Processor 2

get pixel p at i,j p=(128, 84, 200)

g = green value at p . . . g = 84

r = red value at p get pixel p at i,j r=128; p=(128, 84, 200)

b = blue value at p g = green value at p b=200, g=84

Chapter 11 ■ High-Performance Computing 427

k = (r+b+g)/3 r = red value at p k=137; r=128

p = (k, 0, 0) b = blue value at p p=(137,0,0) b = 0

. . . k = (r+b+g)/3 k = 137/3 = 46

p = (k, 0, 0) p = (46,0,0)

. . .

What happens when two identical programs run using the same data but
slightly out of synchronization is two different results. On one processor, the
code above averages the color values of pixel p, giving a grey value of (137,0,0).
When two processes use the same memory locations simultaneously, the result
is quite different because the processes are modifying the memory at the same
time. In the preceding situation, the result is a level of (46,0,0), but the result
changes depending on how the interaction takes place.

When using shared memory, only one process can be allowed to access shared
memory at a time. This is done by stopping one process temporarily, and then
allowing it to proceed when it is safe. Code that modifies a set of shared mem-
ory locations is called a critical section and can be protected using locking or
semaphores. More details can be found in the references. What is important is
that software for parallel programming offers such protection, and that pro-
grammers are aware of the results of inappropriate access to shared data.

11.1.2 Message Passing
In this paradigm for distributed processing, a program is written as a set
of independent processes that communicate by sending packages of data
between them. Data packages, or messages, can have different types, as can
send integers, or floats as data to each other. There are many geometries for
sending messages, each useful for a different kind of processing. A process can
send a message with different data to a set of other processes, such as sending
a row of a matrix to a Fourier transform program. Similarly, a process can
send a message to a large group of processes, such as sending a threshold to
processes representing parts of images. Processes can even be organized into
‘‘loops,’’ where A sends data to B, who sends to C, who sends to A.

Processes can execute on one computer, on a multi-core CPU, or on
many computers over a network. There is a great degree of flexibility in
a message-passing system. One program can take advantage of a large num-
ber of processors or run to completion on just one. And there are many tools
available for writing distributed programs using message passing. Section 11.3
discusses one such example — the Message-Passing Interface (MPI) system.

11.2 Execution Timing

Because the goal of parallel computation is to produce the results in a shorter
time, it is important to know how to measure the time taken for a program
to execute. Of course, the nature of the results is the most important thing,

428 Chapter 11 ■ High-Performance Computing

and if a faster program produces answers that are wrong or inaccurate, the
faster program is useless, so the slow, correct one should be used. However,
all results being equal, the faster program is to be preferred. How can the
execution time be measured and the speedup quantified?

The commonly used scheme for timing C programs is to insert timing code
into the source. The clock on a computer is like any other, in that it advances
second by second. Sampling the clock before the program starts and then
when it is done yields two times, and the difference is the real time needed
to perform the computation. This is the important thing — the actual time
needed to calculate the result. The CPU time, or the number of cycles used
by the processor multiplied by the time for one cycle, is an abstract thing and
could require vastly more real time to complete.

Computers these days are quick, and measuring computation time requires
a clock with a good resolution. A not especially high-powered PC can evaluate
a sine function a million times in 0.05 seconds. (The same calculation would
have taken 0.875 seconds when the first edition of this book was written in
1997.) This means that a clock used to measure execution time needs to be
accurate to under a millisecond, and preferably to under a microsecond.

11.2.1 Using clock()
An obvious way to measure time is to use the function clock(). It is relatively
generic, being found on Unix, Linux, (in the GNU libraries at least), and
Windows systems (needing the include file windows.h). It is easy to use, too.
clock() takes no arguments and returns a value of type clock_t, which is

an unsigned int or unsigned long, depending on the system. In either case, timing
code is a simple matter. clock() returns a time since reboot (or similar), so
record the clock time before and after the calculation, and then subtract them.
The function returns the time in an arbitrary unit, clock ticks, so to convert
to seconds, the measured time is multiplied by a system-dependent constant,
CLOCKS_PER_SEC, which is the number of ticks in a second. Now the execution
time is known. It is often more useful to have this time in milliseconds, so
divide by 1000 to get this.

Here’s an example program that times a simple calculation. In order to get
a significant value for execution time, a loop that computes a sine function a
large number of times is instrumented, as we say, with timing based on
clock(). The basic inner loop computes sine 1024 times. An outer loop runs
the inner loop niter times, and niter doubles for each trial. The result is a set
of times, each representing twice the computational effort of the one previous.
The program is:

/* example of the use of clock() to time code */

#include “mpi.h“

Chapter 11 ■ High-Performance Computing 429

#include <stdio.h>

#include <windows.h>

#include <math.h>

#include <time.h>

#define BUFSIZE 1024

#define ITERS 1000

int main(int argc, char *argv[])

{

int i, j, niter=0;

double xtime, dat[BUFSIZE], y, z;

clock_t cstart, cstop;

for (niter=ITERS; niter < ITERS*1000; niter *= 2)

{

cstart = clock();

for (j=0; j<niter; j++)

{

for (i=0; i<BUFSIZE; i++)

{

dat[i] = sin (3.1415926535 * i/1024.0);

}

}

xtime = (double)(clock() - cstart)*CLK_TCK/1000.0;

printf (“Iterations %d Clock time is %lf = %lf\n“,

niter, xtime, xtime/niter);

}

printf (“Returning.\n“);

return 0;

}

Each time value measured should be twice the time value of the previous
measurement, but this is not quite the case. A sample output is:

Iterations 1000 Clock time is 46.000000 = 0.046000

Iterations 2000 Clock time is 94.000000 = 0.047000

Iterations 4000 Clock time is 188.000000 = 0.047000

Iterations 8000 Clock time is 359.000000 = 0.044875

Iterations 16000 Clock time is 750.000000 = 0.046875

Iterations 32000 Clock time is 1531.000000 = 0.047844

Iterations 64000 Clock time is 2938.000000 = 0.045906

Iterations 128000 Clock time is 5875.000000 = 0.045898

Iterations 256000 Clock time is 11781.000000 = 0.046020

Iterations 512000 Clock time is 23531.000000 = 0.045959

Returning.

Note that the measurements for small numbers of iterations seem to be less
accurate than those for larger numbers, as indicated by the difference between
consecutive timings on a per-iteration basis. In fact, time is the issue; the longer
the program runs, the more accurate the timing is when using the clock()

430 Chapter 11 ■ High-Performance Computing

function. The last number in each output line is the number of milliseconds per
inner loop (1000 sine calculations). As more and more such loops are timed,
the accuracy seems to improve. The last two trials take a long time, but they
appear to produce times that are good to two significant figures, or perhaps to
0.00005 milliseconds.

The lesson is that to get good timings, the program has to run for a long
time. A typical way to do this is to perform the same calculations many times,
as was done in the example, but on real algorithms and real data. So, when
timing an edge-detection algorithm, simply repeat it a hundred times and
divide the results by 100 to get an accurate answer.

By the way, don’t expect the timings to reproduce exactly on two different
trials. A PC is doing other things in addition to executing the program being
timed. The operating system interferes with the timing process, sometimes
swapping out the program in favor of another one, or Windows can decide to
do a disk-temperature calibration or poll its devices. This adds to the time that
is measured during the program’s execution. More accurate timings can be
obtained by repeating the measurements many times and using the average.

11.2.2 Using QueryPerformanceCounter
Microsoft Windows operating systems (7 and XP, at least) provide a system-
specific, high-resolution timer named QueryPerformanceCounter. It is sup-
posed to be accurate to within nanoseconds and uses a 64-bit representation
for time. Although it is somewhat complex to use, it is a lot like the simple
clock function and is used in almost exactly the same way.
QueryPerformanceCounter takes a single argument, which is a pointer to

a LARGE_INTEGER. A LARGE_INTEGER is actually a structure that represents a
64-bit number, needed for high-resolution times, and which can be ported
across systems (but is probably used only on Windows). As before, the timing
function QueryPerformanceCounter is called before and after the code to be
timed, but passing the variable in which to store the time as a parameter.
The number part of the LARGE_INTEGER structure is called QuadPart; if stop
and start are LARGE_INTEGER variables used to store the time at the start and
end of the code execution, respectively, then the duration is stop.QuadPart

- start.QuadPart, and can be cast as double without losing much. The code
timer seen previously can be written to use QueryPerformanceCounter as:

/* Timing C code using QueryPerformanceCounter */

#include “mpi.h“

#include <stdio.h>

#include <windows.h>

#include <math.h>

#include <time.h>

Chapter 11 ■ High-Performance Computing 431

#define BUFSIZE 1024

#define ITERS 1000

int main(int argc, char *argv[])

{

int i, j, niter=1000;

LARGE_INTEGER start, stop, quantum;

double xtime, dat[BUFSIZE];

for (niter=ITERS; niter<ITERS*1000; niter *= 2)

{

QueryPerformanceCounter(&start);

for (j=0; j<niter; j++)

{

for (i=0; i<BUFSIZE; i++)

{

dat[i] = sin (3.1415926535 * i/1024.0);

}

}

QueryPerformanceCounter(&stop);

QueryPerformanceFrequency(&quantum) ;

xtime = (double)(stop.QuadPart –

start.QuadPart)/(double)(quantum.QuadPart);

printf (“Done. Time = %lf Iterations %d per iteration %lf\n“,

xtime, niter, xtime/niter * 1000);

}

printf (“Returning.\n“);

return 0;

}

There are two important things to note. First, the include file windows.h

is needed. Second, the resolution of the timer is returned by the function
QueryPerformanceFrequency, and the time difference divided by this value
gives the time in seconds. The output of the preceding program is:

Done. Time = 0.045933 Iterations 1000 per iteration 0.045933

Done. Time = 0.091912 Iterations 2000 per iteration 0.045956

Done. Time = 0.184248 Iterations 4000 per iteration 0.046062

Done. Time = 0.367418 Iterations 8000 per iteration 0.045927

Done. Time = 0.736176 Iterations 16000 per iteration 0.046011

Done. Time = 1.527363 Iterations 32000 per iteration 0.047730

Done. Time = 2.996671 Iterations 64000 per iteration 0.046823

Done. Time = 5.883134 Iterations 128000 per iteration 0.045962

Done. Time = 11.779256 Iterations 256000 per iteration 0.046013

Done. Time = 23.556424 Iterations 512000 per iteration 0.046009

Returning.

Note that this high-resolution timer produces essentially the same results
on a PC as does the simple clock function. For 16,000 iterations and above, the

432 Chapter 11 ■ High-Performance Computing

two times differ in the fourth decimal place; since the times are milliseconds,
the differences are microseconds. In the worst case, they differ in the third
place, and that’s pretty good.

In either case, there is now code available to find accurate timing of image
analysis and classification code. The next section discusses how to use this for
parallel systems. In particular, shared memory and message-passing systems
will be examined to see how difficult they are to use, whether accuracy is
affected, and how much improvement in execution time can be achieved.

11.3 The Message-Passing Interface System

The Message-Passing Interface (MPI) system is a well-tested and freely avail-
able system for implementing message passing on PCs. The basic principle
used by MPI is the sending of messages, or packages of information, to com-
puters on a network. Each message can contain data and commands for the
computer to process; it does this and sends a message back with the results.
A central computer usually deals out the data to the satellite computers and
sorts the returning data packages into their correct place, meaning that there
is a potential bottleneck. MPI is a standard message-passing protocol that is
well implemented and easy to install and use.

11.3.1 Installing MPI
MPI requires that special calls be added to the source code that implements the
image-processing operations, so it needs to be installed so that it works with a
convenient compiler. The programs in this book all work with Microsoft Visual
C++ 2008 Express Edition, and fortunately MPI works with this system, and
many others.

1. Download the MPI executable from www.mcs.anl.gov/research/

projects/mpich2/.

2. Run the install script mpich2-1.2.1p1-win-ia32.msi.

MPI will be installed, usually into C:\Program Files\MPICH2. Docu-
mentation can be found online at www.mcs.anl.gov/research/projects/
mpich2/documentation/index.php?s=docs.

3. Set up the compiler. Running MVC++ 8:

In Project ➪ Properties ➪ Linker ➪ Input, add mpi.lib to Additional
Dependencies.

In Project ➪ Properties ➪ C/C++ ➪ General, add C:\Program Files\

MPICH2\include to Additional Include Directories. This path is normal

Chapter 11 ■ High-Performance Computing 433

but may change, depending on how MPI is installed. In all cases, use
X\include, where X is the full path name of the directory where MPI is
installed.

In Project ➪ Properties ➪ Linker ➪ General, add C:\Program Files\

MPICH2\lib to Additional Library Directories. This path is normal but
may change, depending on how MPI is installed. In all cases, use
X\library, where X is the full path name of the directory where MPI is
installed.

Now programs can be compiled, but the MPI system needs to be set up.

4. Run wmpiregister and enter the username and password that you use
for your PC.

5. Run wmpiconfig and select configuration options.

MPI is now set up on one computer.

11.3.2 Using MPI
A simple example of MPI will show the initialization phase — the way paral-
lelism is seen by the program and the way data is sent to and from processes.
Programs compiled for MPI must include mpi.h, which contains the definition
of relevant types and constants. The main program must initialize the MPI
system before any other operations are performed; the call to MPI_Init(0, 0)

does this.
When the program starts, a number of processors to be used, let’s say N of

them, is specified either on the command line or in a box in a WMPIEXECwindow
(more on this later). The call to MPI_Init results in N-1 processes being created;
the creating process is the first and is numbered 0. The other processes are
numbered in ascending order from this to N-1. The number assigned to the
process, called its rank, can be gotten from MPI by using the call:

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

The procedure will return a value in the parameter my_rank that will be a
value between 0 and N-1 inclusive. A value of 0 means that this is the root or
main process, and the other value is a unique integer identifying the process.
The total number of processes created can be found by calling:

MPI_Comm_size(MPI_COMM_WORLD, &size);

The value N-1 is returned in size.
A common way to implement a parallel program using MPI is to have the

main process (i.e., 0, or master) read or acquire the data and distribute it to the
other processes (called slaves), which compute the results. The slave processes

434 Chapter 11 ■ High-Performance Computing

then send the data back to the master, which collates it and save or prints it.
This is simply described by the following code:

if (my_rank ==0) // Master

master (size);

else // Slave

slave (my_rank, size);

This divides the program quite logically into the two parts, and all the MPI
programs in this book can be written in this way.

Finally, the MPI system needs to be terminated, thus freeing system resources
and destroying the processes. This is done using:

MPI_Finalize();

What has been shown is the skeleton of almost any MPI-based parallel
system for processing image or, in fact, most other kinds of data.

11.3.3 Inter-Process Communication
Inter-process communication is at the heart of any message-passing system
and is sufficiently complex that entire volumes can be written about it. The
code on the website will use a basic scheme, allowing others to be examined
as wanted or needed. The most important part of the system is the ability to
send and receive messages — a message being simply a collection of data with
a header. This seems like a simple idea, but sending and receiving of messages
improperly causes much of the trouble that programmers have with MPI.

A message can be sent using:

MPI_Send (data, count, data_type, destination,

tag, communicator)

The variable data is a pointer to the information to be sent, and it will be
of type data_type. The variable count is the number of elements of that type
being sent. The destination is an integer representing the number of the
process that is to receive the data, and tag is an integer that can represent
whatever the user wishes. For example, it generally indicates a message type:
1 could be for image data, 2 could be for parameters to the algorithm, and so
on. The type of message sent should generally synchronize with what is being
expected by the receiver. The communicator is a handle indicating details of
the communication. Most usually, and what will be used here, is the standard
MPI_COMM_WORLD handle.

This function does what is called a blocking send. This means that the process
that is calling sendwill wait (or goes blocked, in operating systems terminology)
until the message has been received before continuing to execute. This is one

Chapter 11 ■ High-Performance Computing 435

cause of problems for programmers: if the message is never received, then the
process blocks forever, or hangs as they say. If enough processes hang, or if the
main program does, then the program will never terminate. Avoiding these
deadlock situations is critical to correct coding of parallel programs.

An example of a send operation would be the master process sending a part
of an image to a slave process — for example, process 2. The image data is
copied to an array called data, which contains grey-level pixels. This means
the data type is unsigned char. If three rows of the image are to be sent, and
each row is NC pixels wide, then the call would be:

MPI_Send (data, NC*3, MPI_UNSIGNED_CHAR, 2, 1, MPI_COMM_WORLD)

Each data type defined by C or C++ has a corresponding constant that
indicates it to MPI_Send: MPI_UNSIGNED_CHAR is what is needed here, but the
other choices are obvious, such as MPI_INT, MPI_FLOAT, and so on. The tag
value is not important unless the programmer assigns some importance to it;
it is ignored by the system in most (but not all) regards. The tag value of 1 here
means ‘‘data.’’

On the other end of a send operation is a receive, where a process accepts
information from another. The form of the call is:

MPI_Recv(data, size, MPI_UNSIGNED_CHAR, 0, MPI_ANY_TAG,

MPI_COMM_WORLD, &stat)

The first three parameters are pretty clear. The fourth, 0, means that this
call expects a message from process 0, or the master process. It is possible to
receive from any process, or even to specify that the send is not known. The
constant MPI_ANY_TAG means that the receive can accept any tag sent. This is
the one place where the tag matters. If a specific tag is given, then the tag on
the message that was sent should match.

The final parameter is a returned status, and from it the size of the message
that was sent, the actual tag sent, error codes, and so on can be retrieved. The
status code is a structure holding the following fields:

MPI_SOURCE— The process number of the sender

MPI_TAG— The tag that was sent

MPI_ERROR— Any error codes associate with the message

A receive operation that corresponds with the preceding send would be:

MPI_Recv (data, NC*3, MPI_UNSIGNED_CHAR, 0, 1,

MPI_COMM_WORLD, &status)

If the size of the data being received is not known, a parameter that specifies
the largest size that is to be expected will work. This allows the system to
allocate enough buffer space.

At this point, a simple example can be compiled, executed, and timed.

436 Chapter 11 ■ High-Performance Computing

11.3.4 Running MPI Programs
The program mpiTest1.c on the website is a simple test of the MPI system. It
simulates the execution of some arbitrary workload to be executed in parallel,
and can demonstrate the way that send and receive calls are used, how
programs are executed, and that parallel code is faster (in real time) than
regular code.

After the compiler has been set up properly, this program should compile
to mpiTest1.exe; a copy of this executable can be found on the website, too. It
can be executed in two ways: First, and to be suggested under Windows, is to
use wmpiexec, which is a part of the Windows installation. Figure 11.1 shows
the wmpiexec window that was used to execute mpiTest1.

Figure 11.1: Using wmpiexec to run an MPI program.

The name of the executable file must be typed into the Application field (or
use the browse key). In this example, the number on the upper-right part of the
window above the Save Job button is 2 and specifies the number of processes
to create. When the Execute button is pressed, the program starts to run with
two processes (in this case), and the output appears in the large white area
below. Note the output line that says:

Done. Time = 2.205164

The other way to run the program is from the command line. Execute the
Windows Command Prompt program, change to the directory where the file
mpiTest1.exe is located, and then type the following command:

“C:\Program Files\MPICH2\bin\mpiexec.exe“ -n 2 -noprompt mpiTest1.exe

This command assumes that the MPI system has been installed in the normal
place (C:\Program Files\MPICH2). It also specifies that two processes are to be

Chapter 11 ■ High-Performance Computing 437

created (the -n 2 parameters). Adding the string > out.txt to the end of the
preceding command will result in the output from the program being placed
into a file called out.txt instead of being displayed on the screen. Sometimes
the output is needed later.

Although this program does not do any useful work, it does require a lot of
time to execute because it performs a calculation in place of real work. It’s a
dummy load and allows the code to be timed as described in Section 11.2.2

The computer on which this program is running is a quad-core Intel Q8200,
each processor being 2.33 Ghz. This means that four simultaneous processes
can be executed: the master (0) and three slaves. After that, any further
processes will run on one of the four processors, in addition to some other
processes, and not much, if any, speed improvement can be expected. This
was tested by running the same program repeatedly, specifying 2, 3, 4, 5,
and 6 processes and examining the elapsed time, which was measured using
QueryPerformanceCounter in the master process. The times are:

PROCESSORS TIME

2 2.02077

3 1.06104

4 0.775137

5 0.622573

6 0.741093

The fact that the times get smaller until 5 processors are used is actual proof
that the system is taking advantage of parallelism to compute the result. That
the speed improves a little after the addition of processor 5 implies that one
of the processors has some extra spare time in addition to what is used for the
basic computation.

11.3.5 Real Image Computations
The program mpiTest1 is a dummy, as it spends CPU time without doing
any useful work. Let’s build a parallel program that does something. Using
the same framework, it should be possible to implement a time-consuming
operation. A median filter comes to mind.

A median filter is intended to smooth noise in an image by replacing each
pixel in the image by the medial value of the pixels in a neighborhood around
that pixel. A 13-point median filter, for instance, takes the 13 nearest pixels
to the target, computes the median, and uses that value to replace the target
value. It is computationally expensive because finding a median means sorting

438 Chapter 11 ■ High-Performance Computing

the 13 pixels and selecting the seventh in the sorted list as the median. Thus,
each such filter involves Rows x Columns sorts of 13 numbers.

The master process sends two messages to each slave process. The first
message contains the size of the image that will be sent to it, as number of
rows and columns. The size will vary according to the number of processes.
If there is one slave, the whole image will be sent; two slaves means that half
will be sent to each; and so on.

The second message sent will contain the pixel data. A pointer to the first
row is passed as the buffer pointer, and the specified number of rows is the
count. The code is:

nr = im->info->nr; nc = im->info->nc;

if (size-1 > 1)

n = (nr+(size-1)*4)/(size-1); // How many rows per processor

else n = nr;

j = 0;

for (partner = 1; partner < size; partner++)

{

rstart = j; rend = j+n+2; if (rend>=nr) rend = nr-1;

b1[0] = (rend-rstart+1);

MPI_Send (b1, 2, MPI_INT, partner, 1, MPI_COMM_WORLD);

MPI_Send (im->data[rstart],

(rend-rstart+1)*nc, MPI_UNSIGNED_CHAR,

partner, 1, MPI_COMM_WORLD);

j = rend-3;

}

When the slaves (I call them partners in the code; it’s friendlier but non-
standard terminology) receive the message, they calculate five passes of a
median filter. They have to receive both messages from the master, in order:

MPI_Recv (p, 2, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD, &stat);

im1 = newimage (p[0], p[1]);

// p[0] is Nrows, p[1] is Ncols.

im2 = newimage (p[0], p[1]);

MPI_Recv(im1->data[0], (4+p[0])*p[1], MPI_UNSIGNED_CHAR, 0, MPI_ANY_TAG,

MPI_COMM_WORLD, &stat);

The calculation is made and then the data is returned:

MPI_Send(im2->data[0], p[0]*p[1], MPI_UNSIGNED_CHAR, 0,1,MPI_COMM_WORLD);

The master receives the data from the partners, which move it directly into
the image array:

j = 0;

for (partner = 1; partner < size; partner++)

{

rstart = j; rend = j+n+2; if (rend>=nr) rend = nr-1;

MPI_Recv (im->data[rstart], (rend-rstart+1)*nc,

MPI_UNSIGNED_CHAR, partner, 1, MPI_COMM_WORLD, &stat);

Chapter 11 ■ High-Performance Computing 439

j = rend-3;

sprintf (name,“H:\\AIPCV\\stage%1d.pgm“, partner);

Output_PBM (im, name);

}

The master saves a copy of each partner’s work in an image file. The results
for a four-processor run are shown in Figure 11.2. The execution timings show
that adding a fourth processor did not help, but that there is a speedup of
25% for using three CPUs. The timings were done four times and the average
was taken. This is standard practice; the average of N measurements is a more
accurate estimate of the actual value than is any one of them. The timings are
available in Table 11.1.

(a) (b)

(c) (d)

Figure 11.2: The result of a parallel computation of a 13-point median filter. (a) Original.
(b) After processor 2 is done. (c) After processor 3. (d) After processor 4.

440 Chapter 11 ■ High-Performance Computing

Table 11.1: Execution Time for Four-Pass, 13-Point Median Filter (Seconds)

CPUS TIME 1 TIME 2 TIME 3 TIME 4 AVERAGE

2 3.172 3.183 3.163 3.164 3.171

3 2.365 2.412 2.374 2.364 2.378

4 2.474 2.458 2.460 2.460 2.463

A problem was discovered while building the median filter program.
OpenCV seems to be incompatible with MPI (or vice versa), so programs
using both will fail to run properly. This may be fixed in a future release, or a
workaround may be found.

11.3.6 Using a Computer Network — Cluster Computing
So far, the performance improvement has been a result of using more than
one processor on a specific computer. These processors are very near each
other, and high performance can be expected due to the fact that they share a
high-speed bus; so, data transfers can take place at memory access speeds. MPI
was designed originally to work across Ethernet networks, where a collection
of PCs (a cluster) would work on the same problem using messages passed
back and forth over the network. It’s easy to do this using Linux or Unix
workstations, but on Windows there are a lot of layers of software on the way.
PCs are consumer items, and Windows is meant for consumers; Unix and
Linux originally were, and are still mainly, built for use by programmers and
other adepts, and have fewer automatic safeguards.

Using MPI in a cluster setting does not require any changes to the source
program. The configuration of the computers involved, on the other hand, has
to be carefully set up. The high-level changes to the PCs being used as slave
processors are:

1. Turn off the firewall. Other security software might have to be shut down,
too, depending on the system.

2. The executable program must be copied to and reside at the same
location on all computers. It may be a good idea to create a direc-
tory specifically for this purpose, perhaps C:\mpiprocs. The complete
path must be identical on all machines, and the directory C:\mpiprocs

must be shared; right-click the directory and select the Sharing tab (see
Figure 11.3).

3. Install MPI on each of the slave processors, in the same way it is installed
on the development and master computer.

4. Install the C++ Express compiler on all slave machines. The compiler
does not need to be set up to compile code, but the local copy of the MPI
program needs library files connected with the compiler.

Chapter 11 ■ High-Performance Computing 441

Figure 11.3: Turning on sharing for a directory containing the MPI executable.

5. Create a user account on all computers, one that has the same username
and password. For this discussion, let the username be ‘‘mpi’’ and the
password be ‘‘mpi.’’ Just to be safe, make sure that this account has
administrator privileges.

6. Execute the MPI program named wmpiregister.exe (installed with the
distribution) and register the username ‘‘mpi’’ and password ‘‘mpi,’’ as
shown in Figure 11.4. Do this on each computer in the cluster.

Figure 11.4: Registering the MPI account and password.

442 Chapter 11 ■ High-Performance Computing

7. Run the MPI program wmpiconfig.exe. Adjust the settings as follows:

In the Hosts section, list the network names of all computers to be used
as slaves. In Figure 11.5 there are two computers: ‘‘hauptmann’’ and
‘‘studio02.’’

Set a location and maximum size of the error log file. This log can be
useful if something goes wrong during a run.

Set a time-out. This is the maximum time that a program will be
allowed to execute, so the value should be much larger than the
longest time the program is expected to take.

Set the phrase to the password used for the MPI user accounts. This
makes it easy to recall.

Figure 11.5: Using wmpiconfig to set up the MPI parameters.

Chapter 11 ■ High-Performance Computing 443

Now it should be set up and ready to go. Running the program as before,
using wmpiexec, will result in the system attempting to connect with the slave
processors and executing the program on them. Errors are possible, perhaps
likely; every PC system on the planet is different from the rest, or nearly so,
and it’s impossible to predict all interactions between software.

This is a lot of work, but some parts, such as moving the executable to a
fixed location, can be automated.

Using a cluster produces unpredictable execution times. Sending data across
the Ethernet and back takes a significant amount of time: an entire 1024x1024
image would need 0.08 seconds using a 100 MB network, and 0.08 seconds
to return the processed pixels. This is on an idle network, and Ethernets can
saturate quickly — at between 30% and 40% of max capacity, as a rule. This
means that it would not be surprising to find that it actually took 0.16 seconds
each way on a real network, or 0.32 seconds both ways. To show a profit in
terms of real execution time, the time needed on one processor needs to be
about three times the transmission time. That’s if an improvement is to be
made using two processors. For three processors, the needed execution time
would be six times the transmission time, and in general 3*N times for N
processors. This is a rule of thumb only, but it means that a cluster is effective
only for very computationally intense problems.

So, how do you tell that ‘‘studio02’’ is actually running code? By watching
the performance window in the Task Manager, as shown in Figure 11.6. The
computer named ‘‘studio02’’ is pretty slow (a 1.2 Ghz Celeron), used simply to
show the setup and operation of a small Windows-based cluster, and it usually
operates at about 2% CPU usage when idle. When mpiTest1 is executed from
the master machine (‘‘hauptmann’’), the usage can be observed to rise to 100%
for a moment while the computation is active, and then it drops off again.

Figure 11.6: The performance meter of a slave processor while running an MPI task from
the network.

444 Chapter 11 ■ High-Performance Computing

11.4 A Shared Memory System—Using the PC
Graphics Processor

Modern graphics processors are really remote descendents of the original PC
graphics card of the 1990s. These days, the graphics processing unit (GPU)
is a parallel processor with greater speed and memory bandwidth than the
main CPU. Why? Because modern video games require a large degree of
sophistication, a lot of memory, and a large degree of speed and power to be
able to render 60 frames of high-resolution graphics each second. That’s what
a video game requires. A GPU costs between $100 and $600 and has the power
of a supercomputer of a decade ago.

It has recently occurred to medical and scientific workers that a GPU can
be used as a computer, and can process their data as fast or faster than
can the CPU. It is true, but the fact remains that a GPU was designed to
render three-dimensional computer models into two-dimensional images. The
implication of the special purpose nature of a GPU is that in order to use
it for more general computation, the problem must be described in terms of
graphical operations. So, for example, it is normal for an image that is to be
processed using a GPU to be saved as a texture, in graphics terms, and for
the operations performed on it to be typical of those performed on a texture.
So GPUs can be programmed with relative ease to perform interpolations and
convolutions. In fact, as vector computers, GPUs can be programmed to do
most things that require the same thing to be done on many different data
objects (e.g., pixels) simultaneously. They implement a form of data parallelism.
Sorting and searching would not be among those things that a GPU could
do well.

Writing code for a GPU is painful. The paradigm is not a natural one for
someone trained as a programmer of PCs and Sun workstations, in that the
essence is one of the applications of a software pattern to many or all data
points concurrently. Loops can’t be eliminated, but are fewer and smaller.
Operations and data flow are sometimes implicit. As a result, whole volumes
are written about it, and only a taste can be given here. The hope is that
the references provide enough detail to fill in the many gaps left by the
explanations and examples that follow.

11.4.1 GLSL
The OpenGL Shading Language (GLSL) was introduced with OpenGL 2.0
in 2004. OpenGL itself is an application programming interface (API) for
computer graphics that functions across computing platforms and graphics
hardware manufacturers. It is used to render graphics on computers of all
types, and is commonly used in applications from scientific visualization to

Chapter 11 ■ High-Performance Computing 445

computer games. Most computers come with an up-to-date OpenGL library,
whether the users know it or not.

The basic nature and operation of OpenGL will be discussed here briefly for
two reasons. First, OpenGL is the framework within which GLSL operates —
the envelope, if you will. Calls to the shader are made though OpenGL, and
OpenGL initialization is an essential first step. Thus, its mode of operation,
built-in constants, and basic syntax must be known. Second, the shader can
only perform operations that are intended for use in rendering polygons.
Any image-processing or vision algorithms implemented using GLSL must
be expressed in terms of some graphical primitive, so it is important to know
what those are and how to access them.

11.4.2 OpenGL Fundamentals
OpenGL will render objects that are defined as polygons. Complex objects such
as cars and teapots are built from triangles or quadrilaterals linked together in
three dimensions and then shaded so as to simulate a curved surface. Graphics
processors these days still describe performance on the basis of the number
of polygons they can process per second. There are multiple ways to draw
polygons in OpenGL, and multiple ways to specify objects that consist of
polygons. The basic scheme encloses a set of polygon descriptions, coded as
procedure calls, between a begin and an end procedure call. Specifically, we
could draw a triangle in the following manner (see also Figure 11.7):

glBegin (GL_TRIANGLES);

glVertex3f (x0, y0, z0);

glVertex3f (x1, y1, z1);

glVertex3f (x2, y2, z2);

glEnd();

glBegin (GL_TRIANGLES);

glVertex3f (x0, y0, z0);

glVertex3f (x1, y1, z1);

glVertex3f (x2, y2, z2);

glEnd();

x2,y2
x1,y1

x0,y0

Figure 11.7: Drawing a triangle iusing OpenGL. All the actual rendering is done between
glBegin and glEnd. Complex objects can be drawn as connected triangles.

446 Chapter 11 ■ High-Performance Computing

The constant GL_TRIANGLES indicates that an independent set of triangles
will be specified as vertices, between the glBegin and glEnd call. The calls
to glVertex3f specify the coordinates of the vertices as three floating-point
Cartesian coordinates: x, y, and z. Each three consecutive calls defines one
triangle here because that is what GL_TRIANGLES means. Color is specified by
calling, as one possibility, glColor3f, passing the R, G, and B values desired.
This effectively sets the current color, and everything is drawn in that color
until it is changed. The color values are between 0.0 and 1.0, so glColor3f

(1.0, 1.0, 1.0) sets the current color to white, and glColor3f (1.0, 0.0,

0.0) sets it to red.
OpenGL maintains a stack of transformation matrices that define the view-

ing geometry, and is always currently using the one on top. Specifying
modifications to the current transformation matrix is easy. Creating and
pushing a new one has to be requested specially. Also, there are multiple
stacks, one for each type of matrix: viewing, model transformations, and
projection transformations. When manipulating the matrices, enter the correct
mode using the glMatrixMode function: either glMatrixMode(GL_MODELVIEW)

or glMatrixMode(GL_PROJECTION). In MODELVIEW mode, we can rotate, scale,
or translate our polygonal models before plotting them. In PROJECTION mode,
we can change the way the scene looks.

The viewing operations involve defining the transformation, specifying the
viewpoint, and specifying the clipping volume. For example, the use of an
orthographic viewing projection can be specified by:

gluOrtho2D (0.0, N, N, 0.0);

which sets up a two-dimensional viewing transformation with the min (left)
and max (right) X coordinates being the first two parameters (0.0 and N), and
the bottom and top coordinates being the final two. In this case, bottom > top,
so Y runs in ascending values from the top of the image to the bottom.

Establishing a perspective viewing transformation is a matter of creating
and pushing a perspective transformation onto the projection stack. The whole
process is:

glMatrixMode (GL_PROJECTION);

glLoadIdentity ();

gluPerspective (90.0, 1.0, 1.0, 350.0);

The call to glLoadIdentity() pushes an identity matrix onto the current
stack (projection stack, in this case). This new matrix is modified according
to the parameters given to the gluPerspective call. Specifically, the first
parameter is the field of view in the vertical direction, in degrees; the second
parameter is the aspect ratio, the ratio of the x extend to the y extend in the

Chapter 11 ■ High-Performance Computing 447

field of view; the last two parameters are the near and far clipping planes
specified as Z coordinate, where 0 is the nearest possible, and positive values
are increasing in distance.

This sets up the basic viewing transformation, but that’s not usually enough.
Where is the center of projection, or the place from which we are looking? In
what direction are we looking? These can be specified by using the call:

gluLookAt (MyX, MyY, MyZ, dirx, diry, 0.0, 0.0,0.0, 1.0);

where MyX, MyY, MyZ are the current three-dimensional coordinates of the place
from where we are looking; dirx, diry, 0.0 represent the direction we are
looking, or the viewing direction, as defined in Figure 11.8; and the last three
parameters represent the vector that identifies the vertical — in this case the
vector (0,0,1), or the Z axis. This call will create a matrix that will be multiplied
by the current one (i.e., top of stack) to give a resultant viewing matrix.

Near Clipping
Plane

Viewing direction

UP Vector

Far Clipping
Plane

COP

Figure 11.8: OpenGL clipping and viewing geometry.

Now we should define the clipping volume. Clipping can be turned on
using:

glViewport (0.0, 0.0, 700.0, 700.0)

which specifies the coordinates, in two dimensions, of the part of the projected
scene that can be seen. If you want to actually clip in three dimensions,
then call:

glFrustrum (left, right, bottom, top, near, far)

where all the parameters are double. This specifies the six clipping planes as
the relevant coordinate only; if Z is distance, for example, then we need only
specify Z for the near and far clipping planes.

448 Chapter 11 ■ High-Performance Computing

11.4.3 Practical Textures in OpenGL
Using textures is very important because images have to be treated like textures
in order to process them on the GPU. Texture mapping in OpenGL involves
three basic steps:

1. First, we have to read the texture into memory; textures are images and
are stored in an image file format such as BMP or JPEG.

2. Next, we map the vertices of the polygon onto texture coordinates ‘‘by
hand.’’ That is, every polygon vertex that we plot must be associated with
a row and column coordinate in the texture image. Remember, the poly-
gons are in three-dimensional space and the texture is in two-dimensional
space.

3. Finally, we draw the polygons, covering them in the process with portions
of the texture.

Once we have defined the mapping, as in step two, this part is almost
automatic, taking place when we draw the polygons because OpenGL kept
track of the polygons that had textures and what they were. So, really, texture
mapping is all about setting up things so that it can be done automatically.

OpenGL thinks of textures as objects, and the image used to map onto
a polygon is merely one property or parameter of the texture. Textures are
referred to by names, which are in fact unique integers. OpenGL assigns these
using:

glGenTextures (N , &textureObject)

which returns the name of a texture; if N=1, it returns the next integer we can
use to define a new texture. In general, this function returns N such names.
It (they) get(s) returned as the second parameter textureObject. This merely
gives a unique ‘‘name.’’ A new texture object is given properties using two
functions, and this means that the name is associated with a texture image,
pixel color scheme and implementation, size, and so on.

First we must bind the name to a target. The official documentation on this
subject seems to me to be a bit fuzzy, especially for beginners. Please bear
with me or skip ahead if you are an advanced user, but I think the following
is essential:

Only one target is important — That target is called GL_TEXTURE_2D. It
represents the two-dimensional texture that is being used at the present
time. There are one- and three-dimensional targets that we will never use.

Only one texture is active at a time — That is the texture currently bound
to the target GL_TEXTURE_2D. If you map a texture, it will be the one bound

Chapter 11 ■ High-Performance Computing 449

to GL_TEXTURE_2D. If you modify a texture parameter, it will be to the
texture bound to GL_TEXTURE_2D.

An OpenGL function call binds a texture to a target:
glBindTexture (GL_TEXTURE_2D, textureObject)

Binding means to connect or to link. So, from now on, the name in
textureObject, which is an integer, will be associated with a particular
set of parameters referring to a texture. The name is really more like a
handle than a name.

The binding can be redone — Every time that glBindTexture is called,
another texture object, specified by name, becomes the one currently
active; it becomes bound to the target GL_TEXTURE_2D. If we want to use
multiple textures, a very common thing to do, we must bind the texture
we want to use before we plot the polygons to be texture mapped.

We can’t change the binding while drawing — Inside of a glBegin-glEnd
block, a call to glBindTexturewill cause an error. The error will not cause
the program to halt, but the desired texture mapping will not occur.

Once we have a name bound to a texture object, we can give that object
properties. Specifying the actual texture image is a simple matter (with
complicated parameters):

glTexImage2D (GL_TEXTURE_2D, 0, 3, width, height, borderWidth,

pixelFormat, pixelType, image)

The first parameter is the kind of texture, always GL_TEXTURE_2D. The second
parameter is called the level of detail, the usual level being 0. The third parameter
specifies the number of color components in a texture pixel. This can be 1, 2,
3, or 4; the 3 specifier above actually means three components: r, g, and b.

Thewidthandheightparameters refer to the size of the image itself, and there
are size limitations. Important fact: Both must be a power of two plus the total size of a
specified border. The size of this border is the sixth parameter, borderWidth; it can
be 0or 1. The pixelFormatcan be one of a few values, specified as constants, and
represents the way pixels are represented. Usual for me is GL_RGB or GL_RGBA.
The pixelType specifies how the pixel values are stored: reals, ints, chars, and
so on. GL_UNSIGNED_BYTE is typical. Finally, image is a pointer to the pixels
themselves, stored in the form described by the parameters.

This process assumes that the properties of the texture image are known
(i.e., it has been read into memory). The call to glTexImage2D does not really
do anything except note what the values of certain image parameters are and
where the image can be found. The image is actually at least four parameters
(image, location, sizes, format), and this one call sets them all. Setting other
parameters is done more simply by calling:

glTexParameter (GL_TEXTURE_2D, pname, pvalue)

450 Chapter 11 ■ High-Performance Computing

There are 16 texture parameters, but not all of them are equally important
and the default values are often okay.

Now for the final step: drawing a texture mapped polygon. This involves
specifying the texture coordinates of each vertex as it is drawn — that’s all! In
practice, here’s how we draw a quad that is mapped to a texture:

glTexCoord2f (1.0, 0.0); glVertex3f (x0, y0, z0);

glTexCoord2f (1.0, 1.0); glVertex3f (x1, y1, z1);

glTexCoord2f (0.0, 1.0); glVertex3f (x2, y2, z2);

glTexCoord2f (0.0, 0.0); glVertex3f (x3, y3, z3);

Each texture coordinate, specified as an (x, y) index into the texture image,
is associated with the vertex coordinate in three dimensions that follows. It’s
that simple.

So, the complete (more or less) code needed to map a texture onto parts of a
cube is as follows:

/* Read the texture image */

readIcon (&hedgeIcon, “hedge1.ppm“);

/* Assign a name */

glGenTextures (1, &hedgeTex);

/* Make it the current texture */

glBindTexture (GL_TEXTURE_2D, hedgeTex);

/* Assign an image to the current texture */

glTexImage2D (GL_TEXTURE_2D, 0, 3, 128, 128, 0, GL_RGB,

GL_UNSIGNED_BYTE, &hedgeIcon[2]);

/* Filter for varying viewing distance */

glTexParameterf (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_NEAREST);

/* The environment setting - MODULATE */

glTexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,

GL_MODULATE);

/* Switch on texture mapping */

glEnable (GL_TEXTURE_2D);

glBegin (GL_QUADS); /* START DRAWING */

/* East face of the cube */

glTexCoord2f (1.0, 0.0); glVertex3f ((x0, y0,z0);

glTexCoord2f (1.0, 1.0); glVertex3f (x1, y1, z1;

glTexCoord2f (0.0, 1.0); glVertex3f (x2, y2, z2);

glTexCoord2f (0.0, 0.0); glVertex3f (x3, y3, z3);

/* West face */

glTexCoord2f (1.0, 0.0); glVertex3f (x0+WEST, y0, z0);

glTexCoord2f (1.0, 1.0); glVertex3f (x1+WEST, y1, z1);

glTexCoord2f (0.0, 1.0); glVertex3f (x2+WEST, y2, z2);

glTexCoord2f (0.0, 0.0); glVertex3f (x3+WEST, y3, z3);

glEnd();

This code appears to be the minimum needed to perform texture mapping
in OpenGL; however, three things have not been mentioned yet:

1. We need to switch on texture mapping using a single procedure call, to
glEnable(GL_TEXTURE_2D).

Chapter 11 ■ High-Performance Computing 451

2. There is an environment in which texture mapping takes place, and there
are global parameters that specify how it is done. Essential parameters
specify how the texture is placed on the surface: GL_DECAL pastes a texture
over whatever is there; GL_MODULATE multiplies the background with the
texture, so that they both appear to some extent. The function glTexEnvf

allows us to alter environment parameters.

3. There are parameters that are filters, specifying how the texture changes
scale as we get nearer or farther from it. The parameter GL_TEXTURE

_MIN_FILTER specifies how a pixel being textured is mapped onto an area
bigger than one texture element. In the preceding code, the call:

glTexParameterf (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

specifies that we use the value of the texture element that is nearest physi-
cally to the center of the pixel being mapped onto. This has to be specified or
the mapping would not take place; perhaps the default is not appropriate.

11.4.4 Shader Programming Basics
OpenGL programs are like other C programs. Specifically, they make calls to
the OpenGL library; otherwise, the flow of control is that of traditional C code,
because that’s what it is. Shader programs are not like C or other traditional
programs. Yes, they can have variables and if statements and loops, but the
way that information is sent to a shader program is a little strange, and there
are many aspects of shader execution that are not clearly outlined by the
documentation but that are not common programming practice and that must
be understood. For example, the following are key aspects of shader code:

A shader program executes on all data elements in parallel — Many of
the programs that have been developed as examples in this book operate
on the target image by examining each pixel in turn. Code that does this
uses the following loop:

for (i=0; i<height; i++)

for (j=0; j<width; j++)

do something to a pixel.

The equivalent shader program would be:

do something to a pixel.

There is no need to write code to traverse all pixels, because that’s implicit;
it’s what the graphics processor was built for. And, of course, this is where
the parallelism resides.

There are two important shader types — The vertex shader operates on
vertices, which can be thought of as pixels or as one of the corners of

452 Chapter 11 ■ High-Performance Computing

a polygon, and executes on the vertex processor. The fragment shader
operates on polygons and small sections of an image.

Each type of shader can have a program written for it in shader lan-
guage; each has different characteristics, but both vertex and fragment
shaders follow the same syntax. The two shaders are used for different
sorts of graphic operations and are connected to the OpenGL framework
through function calls. The vertex shader is used to transform vertices
(e.g., brightness, color), manipulate normal vectors, generate and trans-
form texture coordinates, and apply per vertex lighting. It knows about
only one vertex at a time. The fragment shader executes on the fragment
processor, and can do interpolations, apply textures, determine fog and
blur, and determine transparency, among other things. It can use multiple
pixels in the same neighborhood, and so is especially valuable in image
processing because it can perform convolutions, distance computations,
and connectivity determinations. In addition, the vertex shader can send
data to the fragment shader, since vertices are the building blocks of
polygons.

Shader programs are strings that are compiled when the host OpenGL
program executes — The user program treats the shader code as a charac-
ter string, passing it to the shader ‘‘compiler’’ as a parameter. Of course,
all computer programs are a string in some sense, but here it is one
explicitly. Once the shader code is compiled, it can be executed repeat-
edly by using the already compiled version, but only until the program
is complete. The next time the main program runs, the shader program
will be recompiled.

Arguments are passed to shader programs by calling functions, which
store them in fixed locations — In this sense, a shader program is a bit
like a device driver, where parameters are placed in fixed addresses in
memory, and then the device is started by setting a specific bit someplace.
The shader knows where to look for the value being passed and accesses
it using another simple function call.

11.4.4.1 Vertex and Fragment Shaders

As mentioned in the preceding section, two shaders in the OpenGL/GLSL
scheme correspond to the physical hardware on the GPU. The first shader
in the data pipeline is the vertex shader, which computes the position of each
vertex within the defined coordinate system (the space defined by the graphics
clipping volume). The basic vertex shader looks like this:

void main()

{

gl_Position = ftransform ();

}

Chapter 11 ■ High-Performance Computing 453

where the ftransform function carries out the geometric viewing transforma-
tion on the vertex coordinates. This transformation is defined by the OpenGL
matrix stack built by the programmer. An identical way to do this transform is:

void main()

{

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

}

GLSL’s built-in gl_Position variable can be used to pass the transformed
coordinates to the next stage in the pipeline, the next shader. A vertex shader
without a reference to gl_position will not compile.

The next stage is the fragment shader, which computes the ultimate color or
grey level, and sometimes depth for hidden surface removal, of a fragment.
GLSL’s built-in gl_FragColor variable can be used to define the final color. A
trivial example of a fragment shader is:

void main()

{

gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);

}

This will write a fully saturated red color (R=1.0; other components are 0)
into the pixel. Colors are real values ranging between 0.0 and 1.0. A fragment
shader can do much more, but the basic purpose is to assign a color to a point
in the rendered image.

Both shaders can be passed variables; a vertex shader can pass information
to a fragment shader; and both shaders can share global information, especially
OpenGL variables (such as gl_ModelViewProjectionMatrix).

11.4.4.2 Required GLSL Initializations

The code for setting up a shader consists of the following seven steps, which
are easily kept distinct from the other OpenGL code:

1. First, create a shader object for each shader that is involved. For most
image-processing applications, there will be a vertex shader and a frag-
ment shader. Creating a shader object is like declaring a variable — it
simply marks an intention to use a shader and creates some space for
one. It is accomplished by calling glCreateShader:

GLuint vShader, fShader;

vShader = glCreateShader(GL_VERTEX_SHADER);

fShader = glCreateShader(GL_FRAGMENT_SHADER);

2. Now the source code must be read from a file and saved as a string. The
strings are passed to the system by calling glShaderSource:
vSource = readShader(“C:\\AIPCV\\chap11\\convolve.vert“);

glShaderSource(vShader, 1, (const GLchar **)(&vSource), NULL);

454 Chapter 11 ■ High-Performance Computing

3. At this point, the vertex shader object has source code. It is compiled
using glCompileShader:

glCompileShader(vShader);

4. Any compilation errors are saved in a log. Any programmer knows how
rare it is to get a program to compile correctly after a modification, so it’s
a good idea to check this and print out the log:

glGetShaderiv (vShader, GL_COMPILE_STATUS, &flag);

if(flag == GL_FALSE)

{

printf (“Vertex shader program failed to compile.\n“);

log = (char *)malloc (2048);

glGetShaderInfoLog (vShader, 2048, &siz, log);

printf (“LOG: %s“, log);

free(log);

exit(0);

}

5. Once the program(s) is compiled, a program object is created. This is a
way to specify all the shader objects (programs) that are going to be used.
There will ultimately be one program (the object being created in this
step) that holds all shader objects. So, create the program object (just one):

program = glCreateProgram();

and attach all the shader objects to it:

glAttachShader(program, fShader);

glAttachShader(program, vShader);

6. Now link the shaders to create a single executable program for the GPU:

glLinkProgram(program);

7. Before these programs are executed, they must be identified as the active
shader programs. Many programs can be compiled and linked, but only
one is active, and that’s the one most recently specified by:

glUseProgram(program);

The main C/C++ program can thus switch between shader programs at
execution time, even under user control.

11.4.5 Reading and Converting the Image
The image to be processed must be read in from a file, which is a relatively
simple matter, and then must be sent to a storage place where the shaders can
access it. Images must be stored as OpenGL textures. OpenGL uses textures
to map onto objects so that they look like real-world objects. For example,
mapping a brick texture onto a polygon wall makes it look like a brick wall.

Chapter 11 ■ High-Performance Computing 455

The shader was designed to do a set of operations like texture mapping, so it is
necessary to subvert these intentions and make the shader work on the target
image.

OpenCV can be used to read an image from a file, but the pixel data is in
the wrong form. It’s a simple matter to fix it, though. OpenCV images have
the colors in reverse order from that which OpenGL would like, and so they
must be reversed. Also, some OpenGL textures are RGB format and others are
RGBA, which includes an alpha (transparency) channel.

The steps in the process are as follows.

1. Read in an image:
image = cvLoadImage(name, 1);

Width = image->width; Height = image->height;

2. Allocate a block of memory for the texture pixels:
targetImage = (GLubyte *)malloc (image->width*image->height*4);

p = targetImage;

3. For all pixels, reverse the color bytes and copy them into this new buffer:
for (i = 0; i < image->height; i++)

for (j = 0; j < image->width; j++)

{

s = cvGet2D (image, i, j);

*p++ = (GLubyte) s.val[2];

*p++ = (GLubyte) s.val[1];

*p++ = (GLubyte) s.val[0];

// *p++ = (GLubyte) s.val[4]; // For RGBA textures

}

At this point, the array targetImage holds the pixels in a way that is
acceptable by OpenGL. Using image->imageData directly will work, but
the reds and blues will be reversed. Now this buffer is set up as a texture,
using the OpenGL functions already described.

4. Create a texture ID:
GLuint textn;

glGenTextures(1, &textn);

glBindTexture(GL_TEXTURE_2D, textn);

5. Set the parameters of this texture: size, nature, and data buffer:
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, height, width, 0, GL_RGB,

GL_UNSIGNED_BYTE, (const GLvoid *) targetImage);

6. Describe the graphical properties of the texture:
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

Now the image is ready to be mapped onto an object (polygon or set of
polygons) in OpenGL.

456 Chapter 11 ■ High-Performance Computing

11.4.6 Passing Parameters to Shader Programs
Once a shader program has been read in and compiled, all the variables
declared within it are easy to find; the program is, after all, just a character
string. Certain kinds of variables, noticeably uniform variables, are defined to
be input arguments to the program. A value is placed into such a variable by
the main C program before the shader program executes.

A simple example (from the convolve2.fragprogram on the website) passes
the size of an image to a convolution program. The beginning of the program is:

varying vec2 TexCoord;

#define KERNEL_SIZE 9

float kernel [KERNEL_SIZE];

uniform sampler2D colorMap;

uniform float Width;

uniform float Height;

float dw, dh;

vec2 offset[KERNEL_SIZE];

void main (void)

{

....

The first declaration, for TexCoord, shows it to be varying; this means that
it is being received from the vertex shader. A few lines below there are three
uniform declarations: a sampler2D, which is a texture (an image), and two
floats, Width and Height. These are being passed from the main C code.

The calling C program does the following to set up the passing of the float
values:

k = glGetUniformLocation(shaderProgram, “Width“);

This call gets the location in which to place the value for the Widthparameter.
Note that the name of the parameter is specified here; it is found in the program
and its location is returned.

if (k<0) printf (“Error: Name 'Width’ not found in shader program.\n“, k);

If -1 is returned, it means that the variable name was not found. Variables
are not found if they are not actually used.

Finally, the following:

glUniform1f(k, (float)Width);

Chapter 11 ■ High-Performance Computing 457

sets the value at the location k (i.e., where ‘‘width’’ is in the fragment shader)
to the value of the Width variable, which is in fact image->Width for the image
that was read in. Similarly, for Height:

k = glGetUniformLocation(shaderProgram, “Height“);

printf (“Error: Name 'Height’ is at %d in shader program.\n“, k);

glUniform1f(k, (float)Height);

The variable of type sampler2D is a different kind of thing. A sampler is a
handle (i.e., a pointer to a structure that describes some object) that allows
access to a texture. Its implementation is mysterious and the details are not
necessary to know, but knowing how to connect textures to samplers is
important. Samplers are always input and cannot be modified within a shader.
An image will be of type sampler2D, or a two-dimensional texture. The only
use for a sampler inside of a fragment shader is to identify a texture to a
function (a texture lookup function) that can look up pixel values; for example,
the function texture2D (A, B) takes a uniform2D value named A and a pair of
indices, B, (a two-dimensional vector giving row and column coordinates of a
point in the texture) and returns the pixel value corresponding:

texLoc = glGetUniformLocation(shaderProgram, “colorMap“);

printf (“Name 'colorMap’ is at %d in shader program.\n“, texLoc);

glUniform1i(texLoc, 0);

Passing a value of 0 here tells the shader to use GL_TEXTURE0 as the texture
being passed, and, in this case, this corresponds to the image being processed.

Many types can be passed to a shader, including vectors and matrices.

11.4.7 Putting It All Together
Let’s finish this discussion of programming by writing a program to sharpen
an image using a simple convolution filter. The GPU will convolve the input
(color) image with the following 3 x 3 matrix:

−1 −1 −1
−1 9 −1
−1 −1 −1

The advantage of this problem is that the code can be easily and quickly
changed to perform nearly any convolution.

The main program, provided on the website as shader2.c, is based on the
vertex and fragment shader programs above and is organized as follows:

1. Set up the OpenGL GLUT declarations to open windows and display
images, or use another facility to display images. Recall that openCV

458 Chapter 11 ■ High-Performance Computing

can’t be used. This detail is covered elsewhere and is a common first step
in any OpenGL program.

2. Initialize a utility called GLEW, which is used to manage the complex
code found in the large array of OpenGL libraries. Think of it as a version
management system. It is not absolutely necessary, but it simplifies the
process for beginners.

These two steps are cookbook code. Details can be found in the references
if more information is wanted.

3. Read the image (see Section 11.4.1.6) and set it up as a texture. The
program provided sets up two textures, as writing to the same buffer as
one is reading from is a bad idea.

4. Read and initialize the shader programs (see Section 11.4.1.5)

5. Run the main loop (glutMainLoop), which results in the image being
mapped as a texture on a rectangle and displayed in a window. When
this is done, the shader programs operate on all pixels before the display
occurs. The render function is a callback that is used to display the
result. After setting up the viewing coordinate system, this function
binds the texture (see Section 11.4.1.2), specifies the shader program
using glUseProgram (see Section 11.4.1.5), and sets up the parameters to
be passed (see Section 11.4.1.7). The rendering is done in between the
glBegin() and glEnd() calls, where the polygon mapped with the image
is drawn.

Figure 11.9 shows an example of this program’s results. The original image
is displayed in initial form, the CPU processed version is shown in a distinct
window, and the GPU processed image is in a third window.

Figure 11.9: Image of a street in downtown San Antonio sharpened using a convolution
mask (unsharp masking) left to right: by the CPU, and by the GPU, an ATI Radeon HD5670.
The GPU is 200 times faster.

Chapter 11 ■ High-Performance Computing 459

11.4.8 Speedup Using the GPU
The program shader2 on the website is instrumented to show execution time.
The CPU code used to implement the contract enhancement is timed using
QueryPerformanceCounter, and so is the render function, which uses the
shader code to accomplish the same task. Each time render is called the time is
added, and when the program quits, the average over all executions — usually
many thousands — is calculated and printed. The results are astonishing; over
three trials the execution times are:

CPU execution time = 0.612 0.444 0.534 seconds
GPU execution time = 0.0020 0.0022 0.0015 seconds

It is plain to see why the extra time needed to program a shader might be
worth it. In the worst case, the GPU was more than 200 times faster than the
CPU for this task. There seems to be some sort of initialization effect showing
in the GPU timings, as the first runs are slower than the others. Stopping the
program and running it again 30 minutes later gives a longer execution time
again. Over long runs, the time averages to well under 0.002 seconds.

The sample shader and C driver programs provided in this chapter still have
a lot of magic in them for people unfamiliar with OpenGL, but they should
provide a basis for experimentation. When in doubt about how the shader
works, test it by writing a small program. Documentation for GLSL and many
other sample programs exists on the Internet, but be aware that there are two
main versions of GLSL out there, so don’t get them confused. Programs with
a lot of ARB suffixes represent a previous version than the one used here.

11.4.9 Developing and Testing Shader Code
It is difficult to write and test shader code, because it is compiled during the
execution time of the main program. Compile errors are detected after an image
is read in, maybe after it is displayed, and do not provide clear messages or
runtime debugging. Fortunately, there are now shader software development
kits (SDKs) that include an editor and runtime environment. Using one of
these tools, code can be typed into a window and compiled at a keystroke,
and compilation errors can be fixed within seconds. Graphics windows are
usually part of such a tool. In the spirit of this book (that is to say, tools are
free), one such tool, ShaderDesigner by Typhoon Labs (www.opengl.org/sdk/
tools/ShaderDesigner/), is introduced briefly.

Figure 11.10 shows a screen typical of this system. Images (textures) can be
loaded using a pop-up window and mouse selection, eliminating the need to
write the tedious code required to load images from a path and convert them
into the right form. Vertex and fragment shader programs can be typed in to
the main text frame and saved as text files for use in the real application. The
code can be compiled using a mouse click (or by pressing the F4 key), and the
result of the code operating on the image is displayed on the left.

460 Chapter 11 ■ High-Performance Computing

Figure 11.10: The ShaderDesigner main window, showing the basic display and controls.

Best of all, compilation error messages are listed at the lower right of the
window, meaning that errors can be found and corrected quickly. This is
almost like the Visual Studio Express SDK in basic function. The system can
be downloaded and installed in a few minutes on Windows systems that have
OpenGL already installed.

11.5 Finding the Needed Software

All the software discussed in this chapter can be found on the Internet and is
free to download. This chapter has used a lot of new items, which need to be
found, downloaded, installed, and the compiler needs to be set up to use it. A
brief description of what is needed would be in order.

Installation of software depends on the system and the compiler. Directions
should be available on the website for the package. In general, the include file
directory and the library file directory for the package need to be added to
the compiler search paths; the library (a .lib file) needs to be added to the
library dependencies; and a .dll file or two (on a PC) needs to be placed in a
Windows directory. On Linux and Mac systems, the details vary.

MPI — Can be downloaded from www.mcs.anl.gov/research/projects/

mpich2/. Refer to Section 11.3.1 for details about installing MPI.

Chapter 11 ■ High-Performance Computing 461

OpenGL — Is normally found on Windows PCs and Apple computers. A
good source of documentation and tutorials is www.opengl.org/. Recent
versions can be downloaded from the website that is specific for the
graphics card (usually http://developer.amd.com/pages/default.aspx

or http://developer.nvidia.com/object/opengl_driver.html).

GLUT — A window system-independent toolkit for writing OpenGL
programs, downloadable from www.xmission.com/~nate/glut.html.

GLEW — A cross-platform open-source C/C++ extension-loading
library. It provides efficient run-time mechanisms for determining which
OpenGL extensions are supported on the target platform. Downloadable
from http://glew.sourceforge.net/.

11.6 Website Files

clock1.c Shows the use of the clock function for timing execution

clock2.c Uses QueryPerformanceCounter to time code execution

mpiTest1.c Demo of MPI program, with timing

mpiTest2.c A 13-point median filter using MPI to distribute the work over
multiple processors

shader1.c Parallel image processing using the GPU; convolution for
image sharpening

shader2.c Image processing with timing, passing image size as
parameter

mpiTest1.c Executable of mpiTest1.c

convolve.vert Basic vertex shader program

convolve1.frag Fragment shader, convolution of 512x512 image

convolve2.frag Fragment shader, convolution, size passed as arguments

pic3.jpg Image used for testing — a street scene in San Antonio, Texas

11.7 References

Andrews, G. R. Multithreaded, Parallel, and Distributed Programming. Reading,
MA: Addison-Wesley, 2000.

Bailey, M. ‘‘Intro to GLSL,’’ teaching slides, Oregon State University, 2006.
Barney, B. ‘‘OpenMP,’’ Lawrence Livermore National Laboratory, last modi-

fied March 6, 2010, https://computing.llnl.gov/tutorials/openMP/.

462 Chapter 11 ■ High-Performance Computing

Buck, I., and T. Purcell. ‘‘A Toolkit for Computation on GPUs,’’ in GPU Gems,
ed. R. Fernando. Reading MA: Addison-Wesley, 2004, 621–636.

Dowd, K., and C. Severance. High Performance Computing, Second Edition.
Cambridge: O’Reilly, 1998.

Fung, J. ‘‘Computer Vision on the GPU,’’ in GPU Gems 2, ed. M. Pharr. Reading,
MA: Addison-Wesley, 2005, 651–667.

Fung, J., and S. Mann. ‘‘Using Multiple Graphics Cards as a General Purpose
Parallel Computer: Applications to Computer Vision,’’ Proceedings of the 17th
International Conference on Pattern Recognition, Cambridge, United Kingdom,
2004, 805–808.

Galloway, N. ‘‘Getting OpenGL to Work With Visual C++,’’ Thoughts From My
Life, 2008, http://thoughtsfrommylife.com/article-748-OpenGL_and_

Visual_Studio_Express_2008.

Kessenich, J. ‘‘The OpenGL Shading Language,’’ document revision 8, Septem-
ber 7, 2006, http://www.opengl.org/registry/doc/GLSLangSpec.Full.1

.20.8.pdf.

Lindsay C. ‘‘Intro to GPU Programming (OpenGL Shading Language),’’
talk slides. Accessed May 2010, http://web.cs.wpi.edu/~rich/courses/
imgd4000-d09/lectures/gpu.pdf.

Marroquim, R., and A. Maximo. ‘‘Introduction to GPU Programming with
GLSL,’’ Tutorials of the XXII Brazilian Symposium on Computer Graphics and
Image Processing, Rio de Janeiro, IOP Publishing (UK) Brazil: 2009.

Matsuoka, S., T. Aoki, T. Endo, A. Nukada, T. Kato, and A. Hasegawam. ‘‘GPU
Accelerated Computing — From Hype to Mainstream, the Rebirth of Vector
Computing,’’ Journal of Physics: Conference Series 180 (2009).

McClelland, J. L., and D. E. Rummelhart. Parallel Distributed Processing —
Explorations in the Microstructures of Cognition. Volume 1: Foundations. Cam-
bridge, MA: The MIT Press, 1986.

McClelland, J. L., and D. E. Rummelhart. Parallel Distributed Processing —
Explorations in the Microstructures of Cognition. Volume 2: Psychological and
Biological Models. Cambridge, MA: The MIT Press, 1986.

Molaro, D., and J. R. Parker. ‘‘A Distributed Thinning Algorithm on a Work-
station Network,’’ in Parallel Programming and Applications, ed. Fritzson and
L. Finmo. Amsterdam, Netherlands: IOS Press, 1995, 195–202.

Molaro, D., and J. R. Parker. ‘‘Distributed Programming Using Objects — A
Case Study,’’ Third Golden West International Conference on Intelligent Systems,
Las Vegas, June 6–9, 1994.

O’Connor, K. ‘‘Intro GLSL,’’ teaching slides, GV2, University of Dublin, 2006.
Olano, M., and W. Heidrich. Real-Time Shading, ed. J. C. Hart, M. McCool.

Natick MA: AK Peters, Ltd, 2002.
OpenGL SourceForge.net. The OpenGL Extension Wrangler Library (GLEW).

Accessed May 20, 2010, http://glew.sourceforge.net/index.html.

Chapter 11 ■ High-Performance Computing 463

OpenMP Architecture Review Board. ‘‘Summary of OpenMP 3.0 C/C++
Syntax,’’ 2008, http://www.openmp.org/mp-documents/OpenMP3.0-Summary
Spec.pdf.

Parker J. R. ‘‘A Multiple/Parallel System For Recognizing Handprinted Dig-
its,’’ Vision Interface 1997, Kelowna, B.C., Canadian Image Processing and
Pattern Recognition Society May 20–22, 1997.

Parker, J. R. Start Your Engines — Developing Driving and Racing Games. Scotts-
dale,: Paraglyph Press, 2005.

Rost, R. OpenGL Shading Language, (‘‘Orange Book’’). London: Addison
-Wesley, 2004.

Segal, M., and K. Akeley. ‘‘The OpenGL Graphics System: A Specification
(Version 2.0),’’ 2004, http://www.opengl.org/documentation/glsl/2010/
11/10 glspec20.pdf.

Snir, M., S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI — The
Complete Reference, Volume 1: The MPI Core, 2nd edition. Cambridge, MA:
MIT Press, 1999.

Talton, J. ‘‘OpenGL Shading Language,’’ teaching slides, Stanford University,
2006.

van der Pas, R. ‘‘An Introduction Into OpenMP,’’ IWOMP 2005, Eugene,
OR: University of Oregon, 2005, http://www.nic.uoregon.edu/iwomp2005/
iwomp2005_tutorial_openmp_rvdp.pdf.

Villar, J. R. ‘‘Chapter 1 — Introduction to GLSL,’’ OpenGL Shading Lan-
guage Course, TyphoonLabs, 2009, http://www.opengl.org/sdk/docs/

tutorials/TyphoonLabs/Chapter_1.pdf.

Index

() parentheses in MAX expressions,
112

:= (assignment operator) in MAX, 110
; (semicolon) in MAX, 109
<< (input operator) in MAX, 109
>> (output operator) in MAX, 109
4-distance, 211
4-neighbors, 86
4-regions, 86
8-distance, 211, 300
8-neighbors, 86
8-regions, 86

A
a posteriori method, 374
acceptability, 312, 373
activation function, 364–365
activation values (nodes), 364–365
acute angle emphasis, 215
Adaboost (Adaptive boosting), 317
adaptive algorithm, 327
adaptive gradient method, 51
AIPCV library, interfacing with, 14–18
algorithms

adaptive algorithm, 327
Algorithms for Image Processing and

Computer Vision website, 02
Baird algorithm, 341
Choi/Lam/Siu algorithm, 224–226

contour-based thinning algorithms,
221–226

DFT algorithms, 268
Differential Box Counting (DBC)

algorithm, 199
ELT algorithm, 160
Fletcher algorithm, 380
median cut algorithm, 203
Otsu’s Grey Level Histogram (GLH)

algorithm, 149
popularity algorithm, 202–204
Sobel algorithm, 56
sorting algorithms, 288
Stentiford thinning algorithm,

212–215
vision algorithms, 288
Zhang-Suen algorithm, 217–220
Zhang-Suen/Stentiford/Holt

combined algorithm (source
code), 235–246

align function, 267
ALOI (Amsterdam Library of Object

Images), 397
AND elements, 365–366
angular regions, 412–413
API (application program interface), 1
arcing (boosting), 316
artifacts, skeleton, 215
artificial blur, creating, 264–269

465

466 Index ■ A–C

artificial neural systems (ANS),
363–364

artificial textures, 178
ASCII code, 324
aspect ratios, 446
assignment operator (:=) in MAX, 110
autosize property, 7
average keyword, 188

B
backpropagation net for digit

recognition, 368–372
bagging, 315–316
Baird algorithm, 341
band-limited Laplacian, 51
band-pass/band-stop filters, 280
Berkeley Image Segmentation Dataset,

204
between-classes variances, 141
bi-level images, 137
bimodal histograms, 153
bin_erode C function, 98, 102
binary Laplacian images (BLI), 51
binary operations

binary dilation, 88–92
binary dilation implementation,

92–94
binary erosion, 94–100
binary erosion implementation,

100–101
binary morphological operators, 87
conditional dilation, 116–119
counting regions, 119–121
hit-and-miss transform operator,

113–115
MAX programming language,

107–113
opening and closing operations,

101–107
region boundaries, identifying, 116

binding names to targets, 448–449
black and white images, 137
black and white photographs, 399
Black scheme, 374
blobworld scheme, 205

blocking send, 434
blur, artificial, 264–269
Boolean edge density, 410–411
boosting (arcing), 316–317
bootstrap aggregation, 315–316
bootstrap samples, 315–316
Borda count, 313–314, 416
Borda method, 374
boundaries

content-based searching and, 418
between objects, 409–410

boustrophedon scanning, 167
break cost, 330–331

C
cameras (webcams), 10–11
Canny, John, 42
Canny edge detector

fundamentals of, 42–48
source code, 62–70

Canny/Shen-Castan comparison,
51–53

capturing images, 10–13
centroid, defined, 304
chain coding, 23, 221
characters

character outlines, properties of,
349–353

handprinted. See handprinted
characters

Choi/Lam/Siu algorithm, 224–226
Chow-Kaneko method, 152–156
chrominance, pixel, 407
circular regions, 414
circularity, 337
city block distance, 300
classifications

bagging and boosting, 315–317
classifiers, multiple (OCR), 372–375
classifying vegetables (example), 293
cross validation, 304–306
in-class and out-class, 295–299
minimum distance classifiers,

299–304

Index ■ C 467

multiple classifiers - ensembles,
309–315

nearest neighbor classifier, 302–303
objects/patterns/statistics, 285–299
support vector machines (SVM),

306–309
visual, 295

clipping and viewing geometry (Open
GL), 447

cluster-based thresholds, 170–171
collections of images, maintaining,

396–398
color

color edges, 53–58
color morphology, 131–132
color quad tree, 400
color quantization, 202
color segmentation, 201–205
color textures, 205
coordinates, 177
current colors, 446
prototype colors, 403–404
references (bibliography), 206–208
saturation (S), 56
segmentation, 178
website files, 205–206

color image features
color quad tree, 400
color-based methods, 407–408
comparing histograms, 402–403
hue and intensity histograms,

401–402
mean feature, 400
overview, 399–400
requantization, 403–404
results for searching experiments

using, 404–407
complements of sets, 89
complex numbers, 254
compute_adaptive_gradient function,

51
computer networks, 440–443
computer vision, 285–287
computers, vector, 426
conditional dilation, 116–119
Condorcet winner criterion, 314

confusion matrix, 303, 349
connected regions, 86
connectedness (digital morphology),

86–87
connectivity numbers, 212–214
content-based searching

content-based image retrieval
(CBIR), 396

data sets and, 418–419
objects/contours/boundaries, 418
query by example features. See query

by example (QBE)
references (bibliography), 420–424
searching images, 395–396
spatial considerations. See spatial

considerations
texture and, 418
website files, 419–420

contours
content-based searching and, 418
contour-based thinning algorithms,

221–226
contrast estimate, 185
contrast keyword, 188
convex deficiencies (OCR), 353–357
convexity of objects, 338
convolution masks, 192–193, 458
convolution of images, 253–254
Copeland rule, 315
core pixels, 328
Corel data set, 415–417
corners, wave, 210
counting regions, 119–121
covariance matrix, 301
CPU systems, 425
critical section code, 427
cross validation, 304–306
cumulative histograms, 403
current colors, 446
curvature of surfaces, 195–198
cvCaptureFromCAM function, 10–11
cvCvtColor function, 402
cvDFT function, 263
cvGet2D function, 6
cvMat function, 263
cvMatToImage function, 269

468 Index ■ C–E

cvMoveWindow function, 7
cvNamedWindow function, 7
cvScalar function, 6, 402
cvSet1D and cvSet2D functions, 263
cvShowImage function, 7

D
data, training, 294–295
data sets, content-based query systems

and, 418–419
decision trees, 331–332
deconvolving images, 252
degradation of images, 251–253
density, edge, 409–410
depth field (IplImage), 4
derivative operators, 30–35
descriptors

defined, 183
results from GLCM, 186

DFT algorithms, 268
Diff array, 258
difference histograms, 186–187
Differential Box Counting (DBC)

algorithm, 199
digit recognition

applications in, 358
backpropagation net for, 368–372

digital bands, defined, 229–230
digital Laplacian, 139
digital morphology

binary operations. See binary
operations

color morphology, 131–132
connectedness, 86–87
grey-level morphology. See

grey-level morphology
morphology defined, 85–86
references (bibliography), 135–136
website files, 132–135

dilation
binary, 88–94
conditional, 116–119
operations, defined, 85

discrete Fourier transform (DFT), 255
discrete inverse Fourier transform, 260

dispersion, vector, 193–195
displaying images, 7–10
dissenting-weighted majority vote

(DWMV), 311, 373
distance

4-distance, 211
8-distance, 300
city block, 300
distance maps, 105
Euclidean, 300
between features, 302–304
Mahanalobis, 300–302
Manhattan, 300
metrics, 300–302
Pythagorean, 300

distributed computing, 426
do expression statements (MAX), 109
domains, defined (objects), 288
downloading software, 460–461
dxy_seperable_convolution C

function, 45

E
edge detection

Canny edge detector, 42–48
Canny edge detector C program

source code, 62–70
Canny/Shen-Castan comparison,

51–53
color edges, 53–58
defined, 22
derivative operators, 30–35
Marr-Hildreth edge detector, 39–42
Marr-Hildreth edge detector source

code, 58–61
models of edges, 24–26
noise, 26–30
purpose of, 21–23
references (bibliography), 82–84
Shen-Castan (ISEF) edge detector,

48–51
Shen-Castan edge detector source

code, 70–80
Sobel edge detector, 36
template-based, 36–38

Index ■ E–F 469

theory and traditional approaches,
23

website files, 80–82
edges

edge density, 409–410
edge direction, 410–411
edge enhancement, defined, 22
edge linking, 345
edge magnitude, 31
edge pixels, 139–140, 410
edge response, 31
edge tracing, defined, 23
edge-level thresholding (ELT). See

ELT (edge-level thresholding)
enhancing results from

co-occurrence matrices with,
190

modeling illumination using,
156–159

ramp edges, 23–24
texture and, 188–191
use of in OCR of faxed images,

345–348
elimination processes, 314
elliptic points, 197
ELT (edge-level thresholding)

algorithm, comparison with other
thresholding methods, 160

defined, 158
implementation and results,

159–160
in poor illumination situations, 160

endpoints, 212–213
energy, texture and, 191–193
ensemble classifiers, 309
entropy

calculating, 186
using, 142–145

erosion
binary, 94–101
erosion-dilation duality, proof of, 98
operations, defined, 85

error rate (edge detection), 42–43
Euclidean distance, 211, 300
Euler number, 338
evenodd function, 258

execution timing
clock() function, 428–430
overview, 427–428
QueryPerformanceCounter, 430–432

F
F1 measure, 406
face image example, 149, 151, 156–157,

163, 168, 171–172
false positives/negatives (edge

detection), 33
false zero-crossing suppression, 51
fast Fourier transform (FFT), 256–259
fax images, OCR on. See OCR on fax

images
features

for classifying vegetables, 293
color image. See color image features
distance between, 302–304
for query by example. See query by

example (QBE)
and regions, 288–292

fftImage function, 267–268
fftlib.c procedures, 273
filtering

band-pass/band-stop filters, 280
frequency domain filters, 280
frequency filters, 278–280
high-emphasis filters, 280
high-pass filters, 279
Homomorphic filtering, 277–281
inverse filter, 270–271
kFill filters, 328–329
low-pass filters, 279–280
median filters, 327, 437
notch filters, 275
Wiener filter, 271–272

fixed-size images, using as templates,
419

flag parameter, 262
Fletcher algorithm, 380
force fields, use of, 230–234
force-based thinning

digital bands, defined, 229–230
force fields, use of, 230–234

470 Index ■ F–G

force-based thinning (continued)
overview, 228–229
segments, digital band, 230
skeletons of stubs, 230
stubs, defined, 230
subpixel skeletons, 234–235

FORTRAN language, 154
Fourier domain, 253
Fourier transforms

defined, 253
discrete Fourier transform (DFT),

255
fast Fourier transform, 256–259
fundamentals, 254–256
inverse Fourier transform, 260
in OpenCV, 262–264
two-dimensional Fourier transforms,

260–262
fractal dimension, 198–201
fragment and vertex shaders,

452–453
frequencies

frequency filters, 278–280
spatial frequencies, 278–279

frequency domain
artificial blur, creating, 264–269
basics, 253–254
fast Fourier transform, 256–259
filters, 280
Fourier transform, 254–256
Fourier transforms in OpenCV,

262–264
inverse Fourier transform, 260
two-dimensional Fourier transforms,

260–262
fromOpenCV function, 16
F-score, 406
fuzzy sets, 146–148

G
Gaussian

curves, 139, 197
filter mask, 45
noise, 29, 43
smoothing filter, 39–40

GLEW utility, 458, 461
globally eroded images, 105
GLSL (OpenGL Shading Language)

basics, 444–445
required initializations of, 453–454

GLUT, 461
glyphs

defined, 322
glyph boundaries, vectorizing, 346
isolating individual (scanned OCR),

329–333
GPU (graphics processing unit)

developing/testing shader code,
459–460

GLSL (OpenGL Shading Language),
444–445

OpenGL background and
fundamentals, 445–447

overview, 444
practical textures in OpenGL,

448–451
programming example, 457–458
reading/converting images,

454–455
shader programming basics,

451–454
shader programs, passing

parameters to, 456–457
speedup with, 459

gradients
morphological (grey-level), 128
multi-dimensional, 53
Graphics Gems, 228

graphs
graph grammars, 382
graph parsers, 382
of processing elements, 365

grey histograms, 409
grey level co-occurrence matrix

(GLCM)
contrast and, 185
descriptors, results from, 186
entropy, calculating, 186
fundamentals of, 183–184
homogeneity and, 185
maximum probability entry, 185

Index ■ G–H 471

moments and, 185
texture operators, speeding up,

186–188
grey levels, 26–28
grey sigma, 409
grey-level histograms method,

141–142
grey-level images

analysis of texture in, 179–182
code for writing, 7
features, 408–411

grey-level morphology
example, 125
fundamentals of, 121–123
morphological gradient, 128
opening/closing grey-scale images,

123–126
segmentation of textures, 129–130
size distribution of objects, 130–131
smoothing operations, 126–127

grey-level segmentation. See also
thresholding

cluster-based thresholds, 170–171
edge pixels, 139–140
entropy, using, 142–145
fundamentals of, 137–139
fuzzy sets, 146–148
grey-level histograms method,

141–142
iterative selection, 140–141
minimum error thresholding,

148–149
moving averages, 167–169
multiple thresholds, 171–172
references (bibliography), 173–175
relaxation methods, 161–167
single threshold selection, sample

results from, 149–151
use of regional thresholds. See

regional thresholds
website files, 172–173

grey-scale
erosion and dilation, 122–123
images, opening/closing, 123–126

grid lines, removing, 275

H
hairs (artifacts), 215
handprinted characters

character outline, properties of,
349–353

convex deficiencies, 353–357
neural nets, 363–372
overview, 348–349
vector templates, 357–363

Hare, Thomas, 314
height field (IplImage), 3
Height parameter, 456–457
hex feature, 401
hidden layers (processing elements),

367
hierarchical template matching, 336
high-emphasis filters, 280
highgui library, 7
high-pass filters, 279
high-performance computing

CPU systems, 425
execution timing. See execution

timing
GLSL, required initializations of,

453–454
GPU. See GPU (graphics processing

unit)
message passing, 427
Message-Passing Interface (MPI)

system. See Message-Passing
Interface (MPI) system

multiple-processor computation,
paradigms for, 426–427

references (bibliography), 461–463
shared memory, 426–427
website files, 461

histograms
comparing, 402–403
grey, 409
hue and intensity, 401–402
slope, 338
source code for calculating sum and

difference, 189
sum, 186–187

hit-and-miss transform operator,
113–115

472 Index ■ H–K

holes in objects, 338
Holt variation of Zhang-Suen, 218–221
homo keyword, 188
homogeneity, 185
homomorphic filtering, 277–281
horizontal projections, 376
Hough image, 343
Hough space, 342–343
Hough transforms, 253, 342–344, 377
Hubble Space Telescope example, 252
hue (color edges), 53, 56
hue and intensity histograms, 401–402
Hurst coefficient, 199–201
hybrid regions, 414
hysteresis thresholding, 48

I
ideal step edge, 23, 25
if (expression) then statements (MAX),

109
illumination

effects, isolating, 280–281
modeling using edges, 156–159

images
capturing, 10–13
color feature. See color image features
deconvolving, 252
degradation of, 251–253
displaying, 7
image degradations, 251–253
image generator, MAX, 112
image processing, 285
IMAGE variable type, 108
image-analysis software, 1–2
imageData field (IplImage), 3
imageDataOrigin field (IplImage), 4
image-processing tasks, 425
imageSize field (IplImage), 4
img variable, 7
maintaining collections of, 396–398
monochrome, 137
OCR on simple perfect images,

322–326
reading/converting, 454–455
reading/writing, 6–7

restoration of. See restoration of
images

scan lines in, 126
searching, 395–396

indirect access (accessing pixels), 6
infinite symmetric exponential filter

(ISEF), 49
initializations, required GLSL,

453–454
input (<<) operator (MAX), 109
inputs (processing elements), 364–365
installing MPI, 432–433
INT variable type, 108
inter-process communication, 434–435
intersections of sets, 89
inverse

filter, 270–271
Fourier transform, 260
moments, 185

IplImage
converting to AIPCV from, 15–16
data structure, 3–6

Iris data set (classification example),
296–299, 302, 305–306

is_candidate_edge function (ISEF
code), 51

ISEF (infinite symmetric exponential
filter), 49

iterative morphological methods,
212–221

iterative selection, 140–141, 152

J
JPEG files, noise and, 271

K
Kapur’s method, 144
kernels, defined, 308
kFill filter, 328–329
Kirsch operator, 37–38
Kitchen and Rosenfeld, 33
Kittler and Illingworth function,

148–149
k-nearest neighbor method, 303–304
kurtosis, 181–182

Index ■ L–M 473

L
Laplacian

digital, 139
differential operator, 39
edge detector, 191

LARGE_INTEGER structure, 430
leave-one-out cross validation, 306
level of detail parameter, 449
LIBSVM software, 309
line adjacency graphs (LAGs),

378–379, 381
line fuzz (artifacts), 215, 217
line of symmetry, 210
linear discriminants, 299
linking, edge, 345
local edge coherence, 33
localization (edge detection), 42–43
loop ... end statements (MAX), 109
low-pass filters, 279
LPBoost scheme, 317

M
Mahanalobis distance, 300–302
majority criterion, 314
Manhattan distance, 300
mapping, texture (OpenGL),

450–451
margins, 307
Marr, David, 39
Marr-Hildreth edge detector

fundamentals of, 39–42
source code, 58–61

MARS (Multimedia Analysis and
Retrieval System), 418

masking, unsharp, 128
masks, Sobel, 410
matching templates (scanned OCR),

325, 329–333
MAX (Morphology And

eXperimentation) programming
language, 107–113

maximum probability entries, 185
mean

feature, 400
grey level, 180–181

medial axis function (MAF), 210–212

median
cut algorithm, 203
filters, 327, 437

membership function, 146
memory, shared, 426–427
merging

multiple classifiers, 372–374
multiple methods, 309–310
type 1 responses, 310–311
type 2 responses, 313–315
type 3 responses, 315

Message-Passing Interface (MPI)
system

installing, 432–433
inter-process communication,

434–435
network cluster computing, 440–443
overview, 432
programs, running, 436–437
real image computations, 437–440
using, 433–434

messages
message expression statements

(MAX), 110
passing, 427
sending/receiving, 434

methods, color-based, 407–408
metrics, distance, 300–302

Microsoft Visual C++ 2008 Express
Edition, 2

minimum distance classifiers
distance between features, 302–304
distance metrics, 300–302
overview, 299

minimum error thresholding, 148–149
MLS (moving least-squares), 158, 160
models of edges, 24–26
moments, statistical, 181, 185, 338,

407–408
monochrome images, 137
monotonicity criterion, 314
Moore, Gordon E., 425
morphology

defined, 85–86
digital. See digital morphology

474 Index ■ M–O

morphology (continued)
morphological boundary extraction,

116
morphological gradient (grey-level),

128
morphological operators, binary, 87

motion blur, 276–277
moving averages, 167–169
moving least-squares (MLS) scheme,

158
moving weighted average method, 158
MPI (Message-Passing Interface)

system. See Message-Passing
Interface (MPI) system

multiple classifiers
ensemble classifiers, 309
evaluation process, 311–312
merging multiple methods, 309–310
merging type 1 responses, 310–311
merging type 2 responses, 313–315
merging type 3 responses, 315
response types, converting between,

312–313
use of, 372–375

multiple CPU systems, 425
multiple features, 338
multiple methods, merging, 309–310
multiple pixel concept, 222
multiple thresholds, 171–172
multiple-processor computation,

paradigms for, 426–427
music symbol recognition, 381–382

N
naturally occurring textures, 178
nChannels field (IplImage), 4
nearest centroid method, 304
nearest neighbor classifier, 302–303
necking artifact (skeletons), 215, 217
negative zero crossing, 51
neighborhood (pixels), 328
network cluster computing, 440–443
networks of processing elements, 365
neural net recognition system (source

code), 383–390

neural nets
advantages of, 363–364
backpropagation net for digit

recognition, 368–372
simple neural net example, 364–368

nodal pixels, 106
noise

defined, 23–24
fundamentals of, 26–30
reduction of (scanned OCR), 327–329
structured, 273–275

nonmax_suppress C function, 47
non-maximum suppression, 45–46
notch filters, 275
Numerical Recipes in C, 154
n-way cross validation, 305

O
objects

boundaries between, 409–410
content-based retrieval and, 418
defined, 287
recognition of, 287–288
size distribution of (grey-level),

130–131
treating as polygons, 226–228
vision systems looking for, 288

OCR (optical character recognition)
on fax images. See OCR on fax images
problem of, 321–322
on scanned images. See OCR on

scanned images
on simple perfect images, 322–326

OCR on fax images
edges, use of, 345–348
overview, 339
skew detection, 340–344

OCR on scanned images
isolating individual glyphs, 329–333
noise reduction, 327–329
overview, 326–327
statistical recognition, 337–339
template matching, 329–333

Index ■ O–P 475

OMR (optimal music recognition),
375–376. See also printed music
recognition

one dimensional recursive filters,
49–50

open direction, defined, 354
OpenCV system

basic code, 2–10
converting AIPCV images to, 14–15
displaying images, 7
Fourier transforms in, 262–264
IplImage data structure, 3–6
program to read/process/display

images (example), 7–10
reading images from files with, 455
reading/writing images, 6–7
versions and companion tools, 2

OpenGL
background and fundamentals,

445–447
textures in, 448–451
websites for

downloading/documentation,
461

opening/closing grey-scale images,
123–126

opening/closing operations, 101–107
operators

for locating edges, 29–30
MAX, 110–112

optical character recognition (OCR).
See OCR (optical character
recognition)

OR function (XOR), 366–367
OR operator, 262
origin field (IplImage), 4
origin-centered Fourier transforms,

270–271
Otsu’s Grey Level Histogram (GLH)

algorithm, 149
output (>>) operator (MAX), 109
output function, 364–365
output values (processing elements),

364–365
overall regions, 411

P
parabolic points, 197
paradigms for multiple-processor

computation, 426–427
parallel computers, 426–427
parallel method, defined, 218
parameters

passing to shader programs, 456–457
texture, 449–450

parliamentary majority vote, 310
parsers, graph, 382
partners, code, 438
pascal image example, 149–150, 152,

156–157, 163, 168, 171–172
passing messages, 427
patterns over a region (texture), 177,

287
pixel masks, 191
pixel representations for RGB images,

4–6
PIXEL variable type, 108
pixels, edge, 139–140
pmax keyword, 188
point spread function (PSF), 252
polygons

drawing (OpenGL), 448
treating objects as, 226–228

popularity algorithm, 202–204
positive zero crossing, 51
precision (information retrieval),

405–406
primal sketch, 39
printed music recognition

music symbol recognition, 381–382
OMR (optimal music recognition)

overview, 375–376
segmentation and, 378–380
staff lines, 376–378

processing elements (PEs), 364
profiles, 338, 350
program objects, 454
PROJECTION mode, 446
projections, horizontal, 323
properties of character outlines,

349–353
proportional spacing (text), 327

476 Index ■ P–R

proto feature, 404
prototype colors, 403–404
p-tile method, 137
Pythagorean distance, 300

Q
QBIC (Querying Images by Content),

418
quad feature, 401
quad trees, 400–401
quantization

requantization, 403–404
uniform, 202–203

query by example (QBE)
color image features. See color image

features
example, 399
grey-level image features, 408–411
overview, 399

R
radial basis functions, 308
ramp edge, 23–24
raster images

converting into vector templates,
359

representing objects with, 286
reading/converting images,

454–455
reading/writing images, 6–10
recall (information retrieval), 406
recognition

of objects, 287–288
rates, 351–353, 356–357
reliability, 312

rectangular regions, 412
rectangularity, 337
recursive filters, 49–50
reduction, color, 399
references (bibliography)

classification, 318–319
content-based searching, 420–424
digital morphology, 135–136
edge detection, 82–84
grey-level segmentation, 173–175

high-performance computing,
461–463

restoration of images, 283–284
symbol recognition, 392–394
texture and color, 206–208
thinning, 247–249
vision system practical aspects,

18–19
reflections of sets, 89
regional thresholds

Chow-Kaneko method, 152–156
ELT algorithm, comparison with

other thresholding methods, 160
ELT thresholding implementation

and results, 159–160
modeling illumination using edges,

156–159
overview of, 151–152

regions
connected, 86
counting, 119–121
features and, 288–292
identifying boundaries of, 116

rejections (classification), 349
relaxation methods, 161–167
reliability formula, 311–312
render function, 458–459
rendering images, 286
requantization, 403–404
response (edge detection), 42
response types, converting between

multiple classifiers, 312–313
restoration of images

frequency domain. See frequency
domain

Homomorphic filtering, 277–281
illumination effects, isolating,

280–281
image degradations, 251–253
inverse filter, 270–271
motion blur, 276–277
references (bibliography),

283–284
structured noise, 273–275
website files, 281–282
Wiener filter, 271–272

Index ■ R–S 477

RGB images
code for writing, 7
pixel representations for, 4–6
RGB values, 56
RGB/RGBA formats, 455

roi field (IplImage), 4
Rosenfeld and Kitchen, 33
rotations, defined, 253
roughness spectrum, 106–107

S
saddle points, 197
sampler, defined (texture), 457
saturation (S), color, 56
scan lines in images, 126
scanned images, OCR on. See OCR on

scanned images
scattergrams, 292
search engine evaluation scheme, 406
search sets, 399
searching images, 395–396
segmentation

color, 201–205
defined, 21
in printed music recognition,

378–380
texture and, 177–179
of textures (grey-level), 129–130

segments, digital band, 230
separable_convolution C function, 45
shader programming

basics, 451–454
passing parameters to programs,

456–457
shader code, developing/testing,

459–460
ShaderDesigner tool (Typhoon

Labs), 459
Shannon’s function, 147
shape numbers, 338
shared memory systems, 426–427, 444
Shen-Castan edge detector

fundamentals of, 48–51
to locate pixels belonging to object

boundaries, 157

Shen-Castan/Canny comparison,
51–53

source code, 70–80
sigma, grey, 409
signal-dependent noise, 29
signal-independent noise, 26
signatures, defined, 338–339
signed sequential Euclidean distance

(SSED) transform, 225–226
simple majority vote (SMV), 310, 372
single threshold selection, sample

results from, 149–151
size distribution of objects (grey-level),

130–131
skeletons

basics, 209
of stubs, 230
subpixel, 234–235

skew angles, 340–341
skew detection (OCR), 340–344
skewness, 181–182
sky image example, 149–150, 152, 156,

163, 168, 171–172
slave processors, 440–443
slope histograms, 338, 346–347
slow4 program, 259
smallest standard deviation, 192
smoothing operations (grey-level),

126–127
Sobel

algorithm, 56
edge detector, 36, 191
masks, 410

software, downloading required,
460–461

sorting algorithms, 288
source code

for calculating sum and difference
histograms, 189

Canny edge detector, 62–70
Marr-Hildreth edge detector, 58–61
neural net recognition system,

383–390
Shen-Castan edge detector, 70–80
Zhang-Suen/Stentiford/Holt

combined algorithm, 235–246

478 Index ■ S–T

spatial considerations
angular regions, 412–413
circular regions, 414
hybrid regions, 414
overall regions, 411
overview, 411
rectangular regions, 412
spatial frequencies, 278–279
test of spatial sampling, 414–417

speed values, 276
spikes (bright spots), 273–274
spurious projections (artifacts), 215,

217
SSED transform, 225–226
staff lines (music OCR), 376–378
staircases, 25–26
standard deviation, 27, 29, 181, 301
statistical

moments, 181
pattern recognition, 288
recognition (scanned OCR), 337–339

stddev keyword, 188
steepest descent method, 370
Stentiford thinning algorithm,

212–213, 215
step edges, 23–25
strings providing image path name, 3
structural pattern recognition, 337
structured noise, 273–275
structuring elements, 89
stubs

defined, 230
skeletons of, 230

subpixel skeletons, 234–235
sub-regions, types of, 411
success rates, 288, 405
Sum array, 258
sum histograms, 186–187
support vector machines (SVM),

306–309
surfaces

curvature of, 195–198
texture and, 193–198

SVMlight, 309
symbol recognition

handprinted characters. See
handprinted characters

multiple classifiers, 372–375
neural net recognition system

(source code), 383–390
optical character recognition. See

OCR (optical character
recognition)

printed music recognition. See
printed music recognition

references (bibliography), 392–394
website files, 390–392

T
tailing (artifacts), 215, 217, 223
Tamura features (texture), 418
targets

binding names to, 448–449
defined (objects), 289

templates
template matching (scanned OCR),

325, 329–333
template-based edge detection,

36–38
using fixed-size images as, 419
vector (OCR), 357–363
vector template style of match, 348

testing
shader code, 459–460
spatial sampling, 414–417
training and, 292–295

textons, 177
textures

analysis of texture in grey-level
images, 179–182

artificial, 178
color textures, 205
content-based searching and, 418
edges and, 188–191
energy and, 191–193
fractal dimension, 198–201
grey-level co-occurrence and. See

grey level co-occurrence matrix
(GLCM)

in OpenGL, 448–451
operators, speeding up, 186–188

Index ■ T–W 479

references (bibliography), 206–208
segmentation and, 129–130, 177–179
surfaces and, 193–198
texture lookup function, 457
website files, 205–206

thinning
approaches to, 210
Choi/Lam/Siu algorithm, 224–226
contour-based thinning algorithms,

221–226
defined, 209–210
force-based thinning. See force-based

thinning
iterative morphological methods,

212–221
medial axis function (MAF), 210–212
references (bibliography), 247–249
skeletons, 209–210
treating objects as polygons, 226–228
triangulation methods, 227–228
website files, 246
Zhang-Suen/Stentiford/Holt

combined algorithm (source
code), 235–246

threshold_edges C function, 51
thresholding

cluster-based thresholds, 170–171
ELT thresholding implementation

and results, 159–160
hysteresis, 48
minimum error, 148–149
multiple thresholds, 171–172
single threshold selection, sample

results from, 149–151
thresholding images (example), 7–10

TIFF files, saving images as, 271
timing, execution. See execution timing
toOpenCV function, 16
tracers, 223
training, testing and, 292–295
transform operator, hit-and-miss,

113–115
transforms, defined, 253
translations of sets, 88
triangles, drawing with OpenGL, 441
triangulation methods, 227–228

trivial regions, 411
Tsallis entropy, 144
two-dimensional Fourier transforms,

260–262, 425
type 1, 2, 3 responses, 309–315

U
uchar (unsigned character), 5
unary operators, 112
uniform

quantization, 202–203
variables, 456

union of sets, 89
unsharp masking, 128, 458
unsigned int/unsigned long, 428

V
value (V), color, 56
vectors

support, 307–308
vector computers, 426
vector dispersion, 193–195
vector template style of match, 348
vector templates (OCR), 357–363
vector-dispersion method, 195
vectorization, 345–346

vegetable classification example, 293
vertex and fragment shaders, 451–453
viewing direction, 447
vision

algorithms, 288
systems, 288
classification, 295

W
wavelet, defined, 401
webcams, capturing images with,

10–13
website files

classification, 317–318
content-based searching, 419–420
digital morphology, 132–135
edge detection, 80–82
grey-level segmentation, 172–173

480 Index ■ W–Z

website files (continued)
high-performance computing, 461
restoration of images, 281–282
symbol recognition, 390–392
texture and color, 205–206
thinning, 246

websites, for downloading
ALOI (Amsterdam Library of Object

Images), 397
code and data for this book, 18
GLEW, 461
GLUT, 461
Microsoft Visual C++ 2008 Express

Edition, 2
MPI, 432, 460
OpenCV versions 1.1 and 2.0, 2
OpenGL, 461
ShaderDesigner tool (Typhoon

Labs), 459
websites, for further information

Adaboost (Adaptive boosting), 317
LIBSVM, 309
support vectors, 309
SVMlight, 309
WEKA system, 309

weight values (processing elements),
364

weighted averaging, 159
weighted majority vote (WMV), 310,

373
WEKA system, 309
white Gaussian noise, 43
width field (IplImage), 3
Width parameter, 456–457
widthStep field (IplImage), 4
Wiener filter, 271–272
Windows Command Prompt

program, 436
within-class variances, 141
wmpiregister.exe MPI program, 441
writing/reading images, 6–10

X
X functions (IPCV library), 17–18
XOR (OR function), 366–367

Z
zero crossings, 39, 232
Zhang-Suen algorithm, 217–220
Zhang-Suen/Stentiford/Holt

combined algorithm (source code),
235–246

	Algorithms for Image Processing and Computer Vision
	Contents
	Preface
	Chapter 1 Practical Aspects of a Vision System — Image Display, Input/Output, and Library Calls
	OpenCV
	The Basic OpenCV Code
	The IplImage Data Structure
	Reading and Writing Images
	Image Display
	An Example

	Image Capture
	Interfacing with the AIPCV Library
	Website Files
	References

	Chapter 2 Edge-Detection Techniques
	The Purpose of Edge Detection
	Traditional Approaches and Theory
	Models of Edges
	Noise
	Derivative Operators
	Template-Based Edge Detection

	Edge Models: The Marr-Hildreth Edge Detector
	The Canny Edge Detector
	The Shen-Castan (ISEF) Edge Detector
	A Comparison of Two Optimal Edge Detectors
	Color Edges
	Source Code for the Marr-Hildreth Edge Detector
	Source Code for the Canny Edge Detector
	Source Code for the Shen-Castan Edge Detector
	Website Files
	References

	Chapter 3 Digital Morphology
	Morphology Defined
	Connectedness
	Elements of Digital Morphology—Binary Operations
	Binary Dilation
	Implementing Binary Dilation
	Binary Erosion
	Implementation of Binary Erosion
	Opening and Closing
	MAX—A High-Level Programming Language for Morphology
	The ‘‘Hit-and-Miss’’ Transform
	Identifying Region Boundaries
	Conditional Dilation
	Counting Regions

	Grey-Level Morphology
	Opening and Closing
	Smoothing
	Gradient
	Segmentation of Textures
	Size Distribution of Objects

	Color Morphology
	Website Files
	References

	Chapter 4 Grey-Level Segmentation
	Basics of Grey-Level Segmentation
	Using Edge Pixels
	Iterative Selection
	The Method of Grey-Level Histograms
	Using Entropy
	Fuzzy Sets
	Minimum Error Thresholding
	Sample Results From Single Threshold Selection

	The Use of Regional Thresholds
	Chow and Kaneko
	Modeling Illumination Using Edges
	Implementation and Results
	Comparisons

	Relaxation Methods
	Moving Averages
	Cluster-Based Thresholds
	Multiple Thresholds
	Website Files
	References

	Chapter 5 Texture and Color
	Texture and Segmentation
	A Simple Analysis of Texture in Grey-Level Images
	Grey-Level Co-Occurrence
	Maximum Probability
	Moments
	Contrast
	Homogeneity
	Entropy
	Results from the GLCM Descriptors
	Speeding Up the Texture Operators

	Edges and Texture
	Energy and Texture
	Surfaces and Texture
	Vector Dispersion
	Surface Curvature

	Fractal Dimension
	Color Segmentation
	Color Textures
	Website Files
	References

	Chapter 6 Thinning
	What Is a Skeleton?
	The Medial Axis Transform
	Iterative Morphological Methods
	The Use of Contours
	Choi/Lam/Siu Algorithm

	Treating the Object as a Polygon
	Triangulation Methods

	Force-Based Thinning
	Definitions
	Use of a Force Field
	Subpixel Skeletons

	Source Code for Zhang-Suen/Stentiford/Holt Combined Algorithm
	Website Files
	References

	Chapter 7 Image Restoration
	Image Degradations—The Real World
	The Frequency Domain
	The Fourier Transform
	The Fast Fourier Transform
	The Inverse Fourier Transform
	Two-Dimensional Fourier Transforms
	Fourier Transforms in OpenCV
	Creating Artificial Blur

	The Inverse Filter
	The Wiener Filter
	Structured Noise
	Motion Blur—A Special Case
	The Homomorphic Filter—Illumination
	Frequency Filters in General
	Isolating Illumination Effects

	Website Files
	References

	Chapter 8 Classification
	Objects, Patterns, and Statistics
	Features and Regions
	Training and Testing
	Variation: In-Class and Out-Class

	Minimum Distance Classifiers
	Distance Metrics
	Distances Between Features

	Cross Validation
	Support Vector Machines
	Multiple Classifiers—Ensembles
	Merging Multiple Methods
	Merging Type 1 Responses
	Evaluation
	Converting Between Response Types
	Merging Type 2 Responses
	Merging Type 3 Responses

	Bagging and Boosting
	Bagging
	Boosting

	Website Files
	References

	Chapter 9 Symbol Recognition
	The Problem
	OCR on Simple Perfect Images
	OCR on Scanned Images—Segmentation
	Noise
	Isolating Individual Glyphs
	Matching Templates
	Statistical Recognition

	OCR on Fax Images—Printed Characters
	Orientation—Skew Detection
	The Use of Edges

	Handprinted Characters
	Properties of the Character Outline
	Convex Deficiencies
	Vector Templates
	Neural Nets
	A Simple Neural Net
	A Backpropagation Net for Digit Recognition

	The Use of Multiple Classifiers
	Merging Multiple Methods
	Results From the Multiple Classifier

	Printed Music Recognition—A Study
	Staff Lines
	Segmentation
	Music Symbol Recognition

	Source Code for Neural Net Recognition System
	Website Files
	References

	Chapter 10 Content-Based Search — Finding Images by Example
	Searching Images
	Maintaining Collections of Images
	Features for Query by Example
	Color Image Features
	Mean Color
	Color Quad Tree
	Hue and Intensity Histograms
	Comparing Histograms
	Requantization
	Results from Simple Color Features
	Other Color-Based Methods

	Grey-Level Image Features
	Grey Histograms
	Grey Sigma—Moments
	Edge Density—Boundaries Between Objects
	Edge Direction
	Boolean Edge Density

	Spatial Considerations
	Overall Regions
	Rectangular Regions
	Angular Regions
	Circular Regions
	Hybrid Regions
	Test of Spatial Sampling

	Additional Considerations
	Texture
	Objects, Contours, Boundaries
	Data Sets

	Website Files
	References
	Systems

	Chapter 11 High-Performance Computing for Vision and Image Processing
	Paradigms for Multiple-Processor Computation
	Shared Memory
	Message Passing

	Execution Timing
	Using clock()
	Using QueryPerformanceCounter

	The Message-Passing Interface System
	Installing MPI
	Using MPI
	Inter-Process Communication
	Running MPI Programs
	Real Image Computations
	Using a Computer Network—Cluster Computing

	A Shared Memory System—Using the PC Graphics Processor
	GLSL
	OpenGL Fundamentals
	Practical Textures in OpenGL
	Shader Programming Basics
	Vertex and Fragment Shaders
	Required GLSL Initializations

	Reading and Converting the Image
	Passing Parameters to Shader Programs
	Putting It All Together
	Speedup Using the GPU
	Developing and Testing Shader Code

	Finding the Needed Software
	Website Files
	References

	Index

